FORMULA SHEET AVAILABLE IN EXAM

The following formulae will be available in the exam:

Notation

- All signals and filter coefficients are real-valued unless explicitly noted otherwise.
- Unless otherwise specified, upper and lower case letters are used for sequences and their z-transforms. The signal at a block diagram node V is v[n] and its z-transform is V(z).
- x[n] = [a, b, c, d, e, f] means that x[0] = a, ..., x[5] = f and that x[n] = 0 outside this range.
- $\Re(z)$, $\Im(z)$, z^* , |z| and $\angle z$ denote respectively the real part, imaginary part, complex conjugate, magnitude and argument of a complex number z.

Abbreviations

BIBO	Bounded Input, Bounded Output	
CTFT	Continuous-Time Fourier Transform	
DCT	Discrete Cosine Transform	
DFT	Discrete Fourier Transform	
DTFT	Discrete-Time Fourier Transform	
LTI	Linear Time-Invariant	
MDCT	Modified Discrete Cosine Transform	
SNR	Signal-to-Noise Ratio	

Standard Sequences

- $\delta[n] = 1$ for n = 0 and 0 otherwise.
- $\delta_{\text{condition}}[n] = 1$ whenever "condition" is true and 0 otherwise.
- u[n] = 1 for $n \ge 0$ and 0 otherwise.

Geometric Progression

•
$$\sum_{n=0}^{r} \alpha^n z^{-n} = \frac{1-\alpha^{r+1}z^{-r-1}}{1-\alpha z^{-1}}$$
 or, more generally, $\sum_{n=q}^{r} \alpha^n z^{-n} = \frac{\alpha^q z^{-q} - \alpha^{r+1}z^{-r-1}}{1-\alpha z^{-1}}$

Forward and Inverse Transforms

z:
$$X(z) = \sum_{-\infty}^{\infty} x[n]z^{-n}$$
 $x[n] = \frac{1}{2\pi j} \oint X(z)z^{n-1} dz$ CTFT: $X(j\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t} dt$ $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\Omega)e^{j\Omega t} d\Omega$ DTFT: $X(e^{j\omega}) = \sum_{-\infty}^{\infty} x[n]e^{-j\omega n}$ $x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n}$ DFT: $X[k] = \sum_{0}^{N-1} x[n]e^{-j2\pi \frac{kn}{N}}$ $x[n] = \frac{1}{N} \sum_{0}^{N-1} X[k]e^{j2\pi \frac{kn}{N}}$ DCT: $X[k] = \sum_{n=0}^{N-1} x[n] \cos \frac{2\pi(2n+1)k}{4N}$ $x[n] = \frac{X[0]}{N} + \frac{2}{N} \sum_{n=1}^{N-1} X[k] \cos \frac{2\pi(2n+1)k}{4N}$ MDCT: $X[k] = \sum_{n=0}^{2N-1} x[n] \cos \frac{2\pi(2n+1+N)(2k+1)}{2N}$ $y[n] = \frac{1}{N} \sum_{0}^{N-1} X[k] \cos \frac{2\pi(2n+1+N)(2k+1)}{2N}$

Convolution

DTFT:
$$v[n] = x[n] * y[n] = \sum_{r=-\infty}^{\infty} x[r] y[n-r] \qquad \Leftrightarrow \qquad V\left(e^{j\omega}\right) = X\left(e^{j\omega}\right) Y\left(e^{j\omega}\right)$$
$$v[n] = x[n] y[n] \qquad \Leftrightarrow \qquad V\left(e^{j\omega}\right) = \frac{1}{2\pi} X\left(e^{j\omega}\right) \circledast Y\left(e^{j\omega}\right) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X\left(e^{j\theta}\right) Y\left(e^{j(\omega-\theta)}\right) d\theta$$
$$\text{DFT:} \qquad v[n] = x[n] \circledast_{N} y[n] = \sum_{r=0}^{N-1} x[r] y[(n-r) \mod_{N}] \qquad \Leftrightarrow \qquad V[k] = X[k] Y[k]$$
$$v[n] = x[n] y[n] \qquad \Leftrightarrow \qquad V[k] = \frac{1}{N} X[k] \circledast_{N} Y[k] = \frac{1}{N} \sum_{r=0}^{N-1} X[r] Y[(k-r) \mod_{N}]$$

Group Delay

The group delay of a filter, H(z), is $\tau_H(e^{j\omega}) = -\frac{d\angle H(e^{j\omega})}{d\omega} = \Re\left(\frac{-z}{H(z)}\frac{dH(z)}{dz}\right)\Big|_{z=e^{j\omega}} = \Re\left(\frac{\mathscr{F}(nh[n])}{\mathscr{F}(h[n])}\right)$ where $\mathscr{F}(z)$ denotes the DTFT.

Order Estimation for FIR Filters

Three increasingly sophisticated formulae for estimating the minimum order of an FIR filter with unity gain passbands:

1.
$$M \approx \frac{a}{3.5\Delta\omega}$$

2.
$$M \approx \frac{a-8}{2.2\Delta\omega}$$

3.
$$M \approx \frac{a-1.2-20\log_{10}b}{4.6\Delta\omega}$$

where a =stop band attenuation in dB, b = peak-to-peak passband ripple in dB and $\Delta \omega$ = width of smallest transition band in normalized rad/s.

z-plane Transformations

A lowpass filter, H(z), with cutoff frequency ω_0 may be transformed into the filter $H(\hat{z})$ as follows:

Target $H(\hat{z})$	Substitute	Parameters
Lowpass $\hat{\omega} < \hat{\omega}_1$	$z^{-1} = \frac{\hat{z}^{-1} - \lambda}{1 - \lambda \hat{z}^{-1}}$	$\lambda = rac{\sin\left(rac{\omega_0 - \hat{\omega}_1}{2} ight)}{\sin\left(rac{\omega_0 + \hat{\omega}_1}{2} ight)}$
Highpass $\hat{\omega} > \hat{\omega}_1$	$z^{-1} = -\frac{\hat{z}^{-1} + \lambda}{1 + \lambda \hat{z}^{-1}}$	$\lambda = rac{\cos\left(rac{\omega_0 + \hat{\omega}_1}{2} ight)}{\cos\left(rac{\omega_0 - \hat{\omega}_1}{2} ight)}$
Bandpass $\hat{\omega}_1 < \hat{\omega} < \hat{\omega}_2$	$z^{-1} = -\frac{(\rho - 1) - 2\lambda \rho \hat{z}^{-1} + (\rho + 1)\hat{z}^{-2}}{(\rho + 1) - 2\lambda \rho \hat{z}^{-1} + (\rho - 1)\hat{z}^{-2}}$	$\lambda = \frac{\cos\left(\frac{\hat{\omega}_2 + \hat{\omega}_1}{2}\right)}{\cos\left(\frac{\hat{\omega}_2 - \hat{\omega}_1}{2}\right)}, \rho = \cot\left(\frac{\hat{\omega}_2 - \hat{\omega}_1}{2}\right)\tan\left(\frac{\omega_0}{2}\right)$
Bandstop $\hat{\omega}_1 \not< \hat{\omega} \not< \hat{\omega}_2$	$z^{-1} = \frac{(1-\rho) - 2\lambda\hat{z}^{-1} + (\rho+1)\hat{z}^{-2}}{(\rho+1) - 2\lambda\hat{z}^{-1} + (1-\rho)\hat{z}^{-2}}$	$\lambda = \frac{\cos\left(\frac{\hat{\omega}_2 + \hat{\omega}_1}{2}\right)}{\cos\left(\frac{\hat{\omega}_2 - \hat{\omega}_1}{2}\right)}, \rho = \tan\left(\frac{\hat{\omega}_2 - \hat{\omega}_1}{2}\right)\tan\left(\frac{\hat{\omega}_0}{2}\right)$