
imglocate: locate objects in images and write
annotations of detected objects as TSV

Leonardo Taccari
s1069964@studenti.univpm.it

Abstract

imglocate is a Python 3 [11] module/script that uses OpenCV li-
braries [7] to detect objects in images and write annotations in tab-
separated values (TSV) text files.

1 Introduction
In the last decades more and more photographies are digitalized and images are
used in several different contexts.

It is often problematic to categorize them. Some cameras, cellphones and
other devices can store meta-data like the time-stamp when it was taken. If
they have a GPS some of them also store the coordinates where the photograph
was taken. However - also given that - it is still difficult to select images based
on the content.

Unix tools like cut(1), grep(1), sed(1) or programming languages like
AWK [3] permits to easily process text efficiently and effectively.

imglocate tries to make the Unix philosophy [6] usable on images as well.
imglocate is a Python 3 [11] module/script that uses OpenCV libraries [7]

to detect objects in images and write the corresponding annotations in tab-
separated values (TSV) text files. Each detected object has an entry in the
annotation with the following fields, in order:

label class label of detected object

confidence confidence

x x coordinates of the bounding box (top-left point)

y y coordinates of the bounding box (top-left point)

height height of the bounding box

width width of the bounding box

imglocate supports two subcommand: annotate and search.
Given a list of images as argument, imglocate annotate create annotates

in a TSV text file in the same path of each image appending to them the
.txt suffix. When running imglocate annotate multiple times against the
same images, the last modification time (mtime) of annotation and image are

1

mailto:s1069964@studenti.univpm.it

checked. The object detection is performed only if the last modification time of
the image is newer than the last modification time of the annotation. The -f
option force to always performs object detection and regenerate the annotation.

Given a label and a list of images - previously annotated via imglocate annotate
- as argument, imglocate search search if the label is present in image and
print all the resulting images containing the label to the standard output.

2 Related works
To the knowledge of the author no similar tool exists to detect object in image
and then generate a simple text file that can be easily processed in the Unix
environment.

The famous optical character recognition (OCR) engine Tesseract OCR [13]
(and other similar programs) given an image as argument generate a text file
as an output - similarly to imglocate - but with a different purpose, that is the
purpose of OCR: recognizing characters in the images, not detecting objects in
them.

Luminoth [15] (now unmaintained) provided something similar to imglocate
annotate -s via lumi predict command. However, the output generated was
not a simple TSV but a JSON that could be not processed via Unix tools as
trivially (despite that the information stored in the JSON are actually the same
of the one stored by imglocate).

AWS Command Line Interface [4] has an aws rekognition detect-labels [5]
command that despite using Amazon Web Services has an interface somewhat
similar to imglocate. However, also in this case the output generated is a more
complex JSON (containing similar information of imglocate plus possible par-
ents of the objects detected) and the usage/passing of arguments is more com-
plicated than imglocate, making it less "Unix-y".

3 Installation, configuration and usage

3.1 Installation
imglocate is freely available under a 2-Clause BSD license.

The source code can be fetch with Git via:

% git clone https://github.com/iamleot/imglocate.git

Apart Python the only dependency needed is OpenCV. To install OpenCV
via pkgsrc [14], e.g. on NetBSD:

% cd pkgsrc/graphics/opencv
% make install

Alternatively, on PyPI [10], unofficial pre-built OpenCV packages for Python
are available for a couple of platforms and, assuming pip is present, they can
be installed via (for the latest 3.4.x release available at the moment of writing):

% pip install opencv-python==3.4.10.35

2

After cloning it and installing all dependencies, imglocate is just a stand-
alone Python module/script and can be invoked directly via:

% cd imglocate
% ./imglocate.py

Alternatively it can be installed in possible /usr/local/bin, user’s /bin
or similar via just, e.g.:

install -m 0755 imglocate.py /usr/local/bin/imglocate

3.2 Configuration
imglocate needs to be configured before it can be used. A configuration file can
be provided via the -c option. By default the configuration file ˜/.imglocaterc
is used.

The configuration field should have an [imglocate] section and should con-
tains all the following entries:

weights path to the deep learning network weights

config path to the deep learning network config

labels path to the labels of the classes returned by the deep learning network.
There should be one label per line.

confidence_threshold confidence threshold

nms_threshold Non-Maximum Suppression (NMS) threshold

The frameworks supported by imglocate (and configuration entries weights/config)
are the ones supported by the OpenCV Deep Neural Network module (dnn) [8],
at the time of writing:

• Caffe

• TensorFlow

• Torch

• Darknet

• DLDT

• ONNX

For example, using YOLOv3 [12] and given weights 1, config 2, labels 3 in
a ˜/.imglocate directory, a confidence_threshold of 0.2 and an nms_threshold
of 0.3 the corresponding imglocaterc file will be:

1YOLOv3 weights can be downloaded at https://pjreddie.com/media/files/yolov3.
weights

2YOLOv3 config can be downloaded at https://github.com/pjreddie/darknet/blob/
master/cfg/yolov3.cfg

3YOLOv3 labels can be downloaded at https://github.com/iamleot/imglocate/blob/
master/examples/yolov3.labels

3

https://pjreddie.com/media/files/yolov3.weights
https://pjreddie.com/media/files/yolov3.weights
https://github.com/pjreddie/darknet/blob/master/cfg/yolov3.cfg
https://github.com/pjreddie/darknet/blob/master/cfg/yolov3.cfg
https://github.com/iamleot/imglocate/blob/master/examples/yolov3.labels
https://github.com/iamleot/imglocate/blob/master/examples/yolov3.labels

[imglocate]
weights = ~/.imglocate/yolov3.weights
config = ~/.imglocate/yolov3.cfg
labels = ~/.imglocate/yolov3.labels
confidence_threshold = 0.2
nms_threshold = 0.3

Please note that this configuration file is used for all further examples in this
paper.

3.3 Usage
imglocate supports two subcommand: annotate and search.

In the following sections common usages and possible more advanced us-
ages are documented. Please note that possible further usage examples and,
in particular, a complete syntax of commands can be found in the imglocate’s
homepage [1] at https://github.com/iamleot/imglocate.

3.3.1 Annotating images

Given a list of images as argument, imglocate annotate create annotations in
a TSV text file in the same path of each image appending to it the .txt suffix.
When running imglocate annotate multiple times against the same images,
the last modification time (mtime) of annotation and image are checked. The
object detection is performed only if the last modification time of the image is
newer than the last modification time of the annotation. The -f option force
to always performs object detection and regenerate the annotation.

For example, to annotate a single image man-woman-walking-opposite-directions.jpg:

% imglocate annotate man-woman-walking-opposite-directions.jpg

Once annotated the annotations are available as man-woman-walking-opposite-directions.jpg.txt:

person 0.99984 539 68 412 743
person 0.99753 138 71 328 705
handbag 0.97554 299 414 218 233
car 0.97361 390 87 84 55
car 0.91132 532 80 51 33
car 0.87065 1045 71 157 87
car 0.74787 581 70 66 59

The corresponding image with bounded box drawn 4 can be found in Fig-
ure 1.

3.3.2 Searching detected object in annotated images

Given a label and a list of images - previously annotated via imglocate annotate
- as argument, imglocate search search if the label is present in images and
print all the resulting images containing the label to the standard output.

For example, after annotating the previous image:
4Once annotated via imglocate annotate the image with the bounded box in Figure 1 was

produced with examples/draw_bounded_box.py helper script, part of imglocate.

4

https://github.com/iamleot/imglocate

Figure 1: William Eggleston, Untitled, c. 1968, annotated via imglocate using
YOLOv3

% imglocate search person *.jpg
man-woman-walking-opposite-directions.jpg

3.3.3 More advanced usages

Annotation can be easily parallelized via find(1) and xargs(1). For example,
to recursively annotate all *.jpg and *.png images in the current directory and
parallelize the annotation to always have 6 instance of imglocate running at the
same time against a set of 4 images per instance:

% find . \(-iname ’*.jpg’ -or -iname ’*.png’ \) -print0 |
xargs -0 -n 4 -P 6 imglocate annotate

Given the simplicity of annotations, simple one-liners can be written to
search annotated images with a certain criteria. For example, to search all
images with at least 5 person in them:

% cat > at-least-5-person.sh <<EOF
#!/bin/sh

awk -F ’\t’ ’
$1 == "person" {

n++
}

END {
if (n >= 5)

print substr(FILENAME, 1, length(FILENAME) - 4)

5

}’ "$1"
EOF
% chmod +x ./at-least-5-person.sh
% find . -name ’*.txt’ -print0 | xargs -0 -n 1 -P 8 ./at-least-5-person.sh

To find all images with exactly one person and one sofa:

% cat > one-person-one-sofa.sh <<EOF
#!/bin/sh

awk -F ’\t’ ’
{

label[$1]++
}

END {
if (label["person"] == 1 && label["sofa"] == 1)

print substr(FILENAME, 1, length(FILENAME) - 4)
}’ "$1"
EOF
% chmod +x ./one-person-one-sofa.sh
% find . -name ’*.txt’ -print0 | xargs -0 -n 1 -P 8 ./one-person-one-sofa.sh

3.4 Development notes
imglocate was mainly developed on NetBSD/amd64 following the -current branch
and pkgsrc-current and OpenCV 3.4.x branch and Python 3.8.5. However, it
should work on any other platform supported by Python 3 and OpenCV.

The code is hosted in a Git repository [1] and each commit is subjected to a
continuous integration (CI) project via GitHub Actions. The corresponding ac-
tion can be found in the Git repository as .github/workflows/python-app.yml.
All the workflows logs can be found at: https://github.com/iamleot/imglocate/
actions.

As part of the CI, the YOLOv3-tiny weights and config are downloaded,
all dependencies are installed and the code is checked and linted via flake8 [9]
and then tested by invoking imglocate and comparing the output generated by
imglocate annotate and imglocate search with expected output.

LGTM [2] is periodically run to find possible issues in the code. Current
status can be found at: https://lgtm.com/projects/g/iamleot/imglocate/.

4 Future works
imglocate should be considered mostly feature complete and apart maintenance,
bug fixing and possible future improvements no further development is planned.

In the Git repository TODO.md files document all known TODO/bugs/improvements
that should be done.

4.1 Irreproducibility of imglocate annotate results
A particularly interesting problem that was pointed out by the test was the
irreproducibility of imglocate annotate results.

6

https://github.com/iamleot/imglocate/actions
https://github.com/iamleot/imglocate/actions
https://lgtm.com/projects/g/iamleot/imglocate/

Initially imglocate annotate printed the float number of confidence field
with a precision of 17 numbers after the dot.

For the same commit, imglocate configuration, YOLOv3-tiny weight/config
and all software version used by the testbed the action pointed out the following
differences in the imglocate annotate -fs examples/office_at_night.jpg
(omitting the bounding box fields that are the same for both runs):

person 0.8456319570541382
-chair 0.7067238688468933
-person 0.6016818881034851
-diningtable 0.26269155740737915
+chair 0.7067239880561829
+person 0.6016820073127747
+diningtable 0.26269131898880005

We can see that chair confidence differs of 1.1920928955078125e−07, person
confidence differs of 1.1920928955078125e−07 and diningtable confidence differs
of 2.384185791015625e− 07 (that is 2 ∗ 1.1920928955078125e− 07).

Given that such details of precision is not needed the problem was workaround-
ed by limiting the precision to 5 numbers after the dot.

A possible hypothesis is that some component used by imglocate can do a
CPU runtime detection of extension instruction set and on a certain testbed
this instruction set is available while on the other it is not available and the
underlying implementation has such possible multiple-of-1.1920928955078125e−
07-bug.

5 Conclusion
In this paper we have discussed the design, implementation and usage of imglo-
cate, a Python 3 module/script to locate objects in images and write annotations
of detected objects as tab-separated values (TSV).

In section 3.3.3 we have seen how having a simple annotation format easily
enable to reuse powerful Unix tools and possibly query for images with certain
detected object only by writing simple one-liners.

The imglocate homepage [1] has further information about it and the API
is extensively documented and can be accessed via pydoc imglocate.

References
[1] imglocate: Locate objects in images and write annotations of detected

objects as TSV. URL https://github.com/iamleot/imglocate.

[2] LGTM: Continuous security analysis. URL https://lgtm.com/.

[3] Alfred V Aho, Brian W Kernighan, and Peter J Weinberger. The AWK
Programming Language. Addison-Wesley Longman Publishing Co., Inc.,
1988.

[4] Amazon Web Services. AWS Command Line Interface, . URL https:
//aws.amazon.com/cli/.

7

https://github.com/iamleot/imglocate
https://lgtm.com/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/

[5] Amazon Web Services. detect-labels - AWS CLI Command Reference, .
URL https://awscli.amazonaws.com/v2/documentation/api/latest/
reference/rekognition/detect-labels.html.

[6] Malcolm D McIlroy, Elliot N Pinson, and Berkley A Tague. Unix time-
sharing system: Foreword. Bell System Technical Journal, 57(6):1899–1904,
1978.

[7] OpenCV team. OpenCV, . URL https://opencv.org/.

[8] OpenCV team. OpenCV: Deep Neural Network module, . URL https:
//docs.opencv.org/master/d6/d0f/group__dnn.html.

[9] PyCQA. flake8. URL https://gitlab.com/pycqa/flake8.

[10] Python Software Foundation. PyPI: The Python Package Index, . URL
https://pypi.org/.

[11] Python Software Foundation. Python, . URL https://www.python.org/.

[12] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement.
arXiv, 2018.

[13] Ray Smith. An overview of the tesseract ocr engine. In Ninth international
conference on document analysis and recognition (ICDAR 2007), volume 2,
pages 629–633. IEEE, 2007.

[14] The NetBSD Foundation. pkgsrc. URL https://www.pkgsrc.org/.

[15] Tryolabs. Luminoth: Open source toolkit for Computer Vision. URL
https://luminoth.ai/.

8

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rekognition/detect-labels.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/rekognition/detect-labels.html
https://opencv.org/
https://docs.opencv.org/master/d6/d0f/group__dnn.html
https://docs.opencv.org/master/d6/d0f/group__dnn.html
https://gitlab.com/pycqa/flake8
https://pypi.org/
https://www.python.org/
https://www.pkgsrc.org/
https://luminoth.ai/

	Introduction
	Related works
	Installation, configuration and usage
	Installation
	Configuration
	Usage
	Annotating images
	Searching detected object in annotated images
	More advanced usages

	Development notes

	Future works
	Irreproducibility of imglocate annotate results

	Conclusion

