

Тһе PPL

Development Kit

The PCBoard Programming Language
Reference Manual

Copyright 1993 © Clark Development Co., Inc.

This software product and manual аге copyrighted and all rights are reserved Бу

Clark Development Co., Inc. No part of the contents of this manual may be

reproduced or transmitted in any form or by any means without the written
permission of the publisher.

Clark Development Company, Inc. does not assume any liability arising out of

the application or use of any products described herein. Clark Development Co,

Inc. further reserves the right to make changes in any products described herein
without notice. This document is subject to change without notice.

PCBoard in a registered trademark of Clark Development Company, Inc. PPL is

a trademark of Clark Development Company, Inc.

Chapter 1 - Introduction to PPL

Chapter 2 - Installing PPLC

Chapter 3 - Developing PPL Applications

Step 1 - Creating Source Code

Step 2 - Compiling Source Code

Step 3 - Installing Your Application

PPE Files as Commands

PPE Files as Script Questionnaires

PPE Files Attached to PCBTEXT Display Prompts

PPE Files in Display Files

PPE Files as Display Menus

Step 4 - Testing Your Application

Chapter 4 - Using PPLC

Running PPLC

Specifying the Source Code File

Compiling Source Code

Compiler Warnings

Compiler Errors

Compiler Exit Codes

Chapter 5 - A PPL Tutorial

“Hello, World!"

Same Thing Done Differently

Fancy Variations

PPL Applications as Commands

Operator Page

Start

PPL Applications as Script Questionnaires

PPL Applications as PCBTEXT Display Prompts

Password Expiration Warning

Logon Language Prompt

PPL Applications in Display Files

Node Specific Display Files

Interactive Welcome Screens

PPL Applications as Display Menus

Chapter 6 - PPL Structure

Basics

Comments

Variable Declaration Statements

Code Statements

Expressions

Constants

Functions

Sub-Expressions

Operators

Chapter 7 - PPL Reference

Lists by Type

Constant List

Function List

Statement List

Type List

Variable List

Alphabetical List

36

36

37

39

39

39

42

47

47

47

47

48

49

49

50

50

51

55

55

55

55

56

56

56

57

1
Introduction to PPL

Introduction to PPL Chapter 1

Introduction to PPL

Welcome to the PCBoard Programming Language (or PPL for short). A question that we

regularly get is "Can we get source code for PCBoard?" Up until now the answer has been no.

Well, the answer still is no (sorry, we aren't going to start selling our source code just yet!), but

you can achieve almost the same level of control with PPL. You see, PPL applications can

access files, control the local and remote displays, watch for input from the keyboard and

modem, access user information, and more. And, all this can be accomplished without the need

to go into a door or other external program because PPL support is built nght in to PCBoard.

PPE files (compiled PPL applications) are smaller than equivalent EXE files (and load and exit

more quickly) because they take advantage of what PCBoard has already loaded into memory:

a complete, robust operating environment for telecommunications!

Since PCBoard has the ability to run PPE files directly, you can wnte PPL applications to
distribute to other SysOps as well. The PPLC package may not be distributed, but you may

distribute your PPS files (PPL source code) and/or your PPE files in any way you see fit

without any royalty payments or run-time licenses.

PPL is a new programming language. Although it is unique among other languages, it does

bear many resemblences to BASIC and batch file programming. If you've never programmed

before, don't worry; simple applications are a breeze to create. You need not understand

everything that PPL has to offer and can leam as you go. If you are an expericnced

programmer in other languages, then PPL has a lot to offer you too.

Don't be fooled; although PPL is capable of many things, it is not designed to be all things to all

people. You will still need (or want) other applications that you have used and trusted for a

long time. Doors will not disappear because of PPL, nor should they. In fact, the PCBoard

DOOR Developer's Toolkit makes a great companion to PPL for all of your board

customization needs. If you are a C/C++ programmer, give us a call for more information

about the PCBoard DOOR Developer's Toolkit.

However, what you can do with PPL (that you can't do with doors) is modify the action of your

BBS. You can built new commands (or replace existing commands) by putting PPE files in the

CMD.LST file. You can design intelligent script questionnaires by installing PPL applications

in your SCR.LST files. You can attach PPE files to display prompts in PCBTEXT files. You

can even launch a PPE from a display file or instead of a display menu! But before we can do

any of this, we do have a few things to take care of first . . .

29 Тһе PPL Development Kit

Chapter 1 Introduction to PPL

4 The PPL Development Kit

2
Installing PPLC

Installing PPLC Chapter 2

Installing PPLC

The PPLC development system comes on a single double density floppy disk. To install it do

the following:

l. Insert the installation disk іп an appropriate floppy drive (А: ог В:).

2. Change to the drive (A: or B:) with the installation disk.

3. Type INSTALL to copy the files to your hard drive.

The INSTALL program will ask you for the drive to which the files should be installed. The

default is C:. After selecting (or confirming) the drive letter you will be prompted to confirm

default or enter new paths (C:\PCB and C:\PCB\PPL) to which to install the files. The

following files will be installed on your system:

1. PPLC.EXE will be installed in your C:\PCB (or user selected) directory.

2. * PPS files (files with а PPS extension) will be installed in your C:\PCB\PPL (or

user selected) directory.

The following tutorial PPS files are included: DOORS.PPS, HELLO1.PPS, HELLO2.PPS.

HELLO3.PPS, HELLO4.PPS, HELLOS.PPS, HELLOG.PPS, HELLO7.PPS,
LANGUAGE.PPS, NODEFILE.PPS, OPPAGE.PPS, ORDER. PPS. PWRDWARN.PPS.
START.PPS, and WELFIRST.PPS. Other examples may be included as disk space permits

so be sure to check out the C:\PCB\PPL directory.

У Тһе PPL Development Kit

Chapter 2 Installing PPLC

8 The PPL Development Kit

3
Developing PPL

Applications

Developing PPL Applications Chapter 3

Developing PPL Applications

There are several steps involved in creating a PPL application. First, you have to write the

source code. Second, you must compile the source code. Third, you must install the compiled

application somewhere in PCBoard. Finally, you need to test the application. For every PPL

program you write, you will likely repeat this process several times as you write, compile. test.

modify, recompile, and test your modifications.

Step 1 - Creating Source Code

Before you can do anything you must write your source code. By default the compiler expects

a file with a PPS extension for your source code, but you can make that extension anything you

want except for PPE. You will need to use a text editor to write your source code. Any editor

that will save files as unformatted ASCII text will suffice.

Step 2 - Compiling Source Code

After you've created your source code (as outlined above) you need to compile it. This is

where you use PPLC.EXE. To run PPLC.EXE simply type PPLC at the DOS command

prompt and hit ENTER:

С: \РСВ\РРІ>РРІС

Since we didn't specify а file name the following screen will be displayed:

С: \РСВ\РРІ>РРІС

PPLC Version 1.00 - PCBoard Programming Language Compiler

USAGE: PPLC SRCNAME[.EXT]

С: \PCB\PPL>

The first line is to let you know what version of PPLC you are running. The second line is to

remind you how to use the program. PPLC requires at least the base file name in order to

execute. Additionally, you must specify the extension of the file if you didn't use the PPS

default that PPLC automatically looks for. Finally, if the file you want to compile isn't in the

current directory, you would need specify the path to the file. So, let's say we wanted to

compile the source code we created in step 1. If the file name that we created was

HELLO.PPS and it existed in the current directory then we would enter the following

command:

C:\PCB\PPL>PPLC HELLO

We could have typed in HELLO.PPS instead of just HELLO. If the file was named
HELLO.SCR we would have needed to type in the entire file name with extension. Finally, if

the file wasn't in the current directory, we would have specified the path to file (for example.

The PPL Development Kit П

Chapter 3 Developing PPL Applications

SOURCE\HELLO or C:\PCB\HELLO.SCR). The following is a sample of the output that
PPLC would generate after compiling HELLO.PPS without any problems:

C:\PCB\PPL>PPLC HELLO

PPLC Version 1.00 - PCBoard Programming Language Compiler

Pass 1...

Pass 2...

Source compilation complete...

С: \РСВ\РРЕ>

After the compile is finished without errors, а new file named HELLO.PPE will exist in the

same directory as the source code. For more information on using PPLC, see the Using PPLC

section.

Step З - Installing Your Application

12

OK, now that we have a compiled application from step 2 we need to install it into PCBoard so
that it may be used. Since there are several ways to install a PPE file, we will go over each of

them at this time.

PPE Files as Commands

You can create new commands (or modify existing ones) with PPL. After compiling the

application you install the PPE like this:

1. Run PCBSetup:

Hit B to select File Locations:

Hit B again to select Configuration Files;

Move down to "Name/Loc of Default CMD.LST File" and hit Е2;

Add your PPE file to the list with an appropriate name and security level

requirement.

In addition to the default CMD.LST file, each conference can have it's own specific CMD.LST

file where you may want to install the PPE file:

1. Run PCBSetup;

Select the desired conference:

Hit the Page Down key to access screen two of the conference configuration;

Move down to "Conf-Specific CMD.LST File" and hit F2;

Add your PPE file to the list with an appropriate name and security level

requirement.

If the PPE file can accept parameters you may enter them (on the same line) immediately

following the PPE path and file name in the CMD.LST editor.

“AUN

VAEN

The PPL Development КИ

Developing PPL Applications Chapter 3

PPE Files as Script Questionnaires

You can create intelligent script questionnaires in place of (or in addition to) standard script

questionnaires with PPL. After compiling the application you install the PPE like this:

1. Run PCBSetup:

2. Select the desired conference:
3. Move down to the Scripts Path/Name List File and hit F2;

4. Add your PPE file to the list in the desired position with an appropriate answer file.

In addition to the conference specific script listings, there are three other scripts that may
utilize PPL: new user, logon and logoff questionnaires. They may be installed as follows:

1. Run PCBSetup:

2. Hit B to select File Locations:

3. Hit D to select New User/Logon/off Questionnaires:

4. Move down to the desired questionnaire and enter the path and file name of the PPE

file to use.

If the answer path and file name is defined for a PPE based script questionnaire then a

temporary file will be opened on channel 0 for questionnaire output. After the application has

exited normally the temporary file will be appended to the answer file. If the application is

exited abnormally the temporary file will not be appended to the answer file. In either case.

the file will be deleted after PPE termination.

PPE Files Attached to PCBTEXT Display Prompts

You can attach PPE files to prompts in the PCBTEXT file that are displayed to the user. After

compiling the application you install the PPE like this:

1. Run МКРСВТХТ;
2. Select the desired display prompt:

3. — Clear the existing prompt with the Ctrl-End key;
4. Enter an exclamation point (!) in the first column, followed immediately by the PPE

path and file name.
If the PPE file can accept parameters you may enter them immediately following the PPE path

and file name. Additionally, if it is a question prompt and you don't want PPL to display the

standard question mark (?) and optional guides. add an underscore after the last character

entered in the prompt field.

PPE Files in Display Files

You can include a PPE file in a display file. It will be run everytime the file is displayed.

After compiling the application you install the PPE like this:

1. Load your text or graphics file editor:

2. Position the cursor on column one of a blank line:
3. Ешегап exclamation point (!) in column one, followed immediately by the PPE

path and file name.
If the PPE file can accept parameters you may enter them immediately following the PPE path

and file name on the same line.

The PPL Development Kit 13

Chapter 3 Developing PPL Applications

14

PPE Files as Display Menus

You can also completely replace a display menu (such as BRDM, BRDS, BLT, DOORS, etc.)
with a PPE file. Simply give it the same base name as the display menu you want to replace

(for example, you would replace BRDM with BRDM.PPE) and put it in the same directory as

the onginal.

Step 4 - Testing Your Application

Alright. now that we've written our source code, compiled it to a PPE file, and installed it, all

that is left is to run it. Before you make it available for others to use you should test it yourself

and confirm that it works the way you intended. If you find a problem with the execution, go

back and repeat steps 1, 2 and 4. (It is already installed so you probably don't need to re-install

it!)

The PPL Development Kit

4
Using PPLC

Using PPLC Chapter 4

Using PPLC

The core of the PPL development system is the PPL compiler, or PPLC.EXE (or just PPLC).

PPLC.EXE is the program that reads source code files and generates compiled applications. A

brief example of the usage of PPLC was given in the previous section. This section describes

in detail how to use PPLC and what information it returns.

Running PPLC

Running PPLC is very simple. Type PPLC at the DOS prompt, just as you would with the

name of any EXE, COM or BAT file. For example:

C:\PCB\PPL>PPLC

If PPLC.EXE in not in the current directory or any directory listed in the path, you would need

to specify the entire path to the compiler. As an example:

C: \PCB\PPL>D: \PPL\ PPLC

> NOTE: The remainder of the examples in this section will assume that PPLC

is available in the current directory or the path.

Since we typed in PPLC without any arguments, it will come up with the help screen:

C:\PCB\PPL>PPLC

PPLC Version 1.00 - PCBoard Programming Language Compiler

USAGE: PPLC SRCNAME[.EXT)

C:\PCB\PPL>

PPLC expects a single parameter to be passed: the path (optional), file name, and extension

(optional) of the source code to compile into a PPL application, or PPE file. If the path is not
specified then the current directory is assumed. If the extension is not specified, an extension

of PPS is assumed. No matter what, never create a source code file with a PPE extension! The

reasons will be explained shortly. In the meantime, just don't use that extension.

Specifying the Source Code File

The source code that is processed by PPLC to create a PPE file is created with a standard text

editor as outlined in Developing PPL Applications. Let's say that you have created and saved a

file named HELLO.PPS. Assuming it was saved in the current directory and that the current

directory is C:\PCB\PPL, any of the following command lines could compile the source code:

C:\PCB\PPL>PPLC HELLO

C:\PCB\PPL>PPLC HELLO.PPS

C:\PCB\PPL>PPLC C:\PCB\PPL\HELLO

C:\PCB\PPL>PPLC C:\PCB\PPL\HELLO.PPS

The PPL Development Kit 17

Chapter 4 Using PPLC

18

Had we given the file an extension of something other than PPS we would have been required

to specify it on the command line. So, to compile a file named HELLO.SCR, we would type:

C:\PCB\PPL>PPLC HELLO.SCR

If we created the file in a directory other than the default, we would need to specify the path

with the file name. So, to compile а file named HELLO.PPS in the D:\SOURCE subdirectory,

we would type:

C:\PCB\PPL>PPLC D:\SOURCE\HELLO

Of course, if the file contained a non-standard extension and was located in another directory,

we would have to specify both the path and extension.

> NOTE: The remainder of this section assumes that source code files always

have a PPS extension and are located in the current directory.

Compiling Source Code

OK, now that we know how to run PPLC and the command line parameters required to specify

a file name, let's get down to the business of compiling a program. The most simple compile

possible looks something like this:

C:\PCB\PPL>PPLC HELLO

PPLC Version 1.00 - PCBoard Programming Language Compiler

Рава 1...

Pass 2...

Source compilation complete...

С: \PCB\PPE>

We specify an existing file name and PPLC compiles it and generates the PPE file without

warnings or errors. Of course, on our first attempt we will often make a mistake and get some

sort of an error message:

C:\PCB\PPL>PPLC HELLO

PPLC Version 1.00 - PCBoard Programming Language Compiler

Равв 1... /

Warning in line number 2
Too many arguments passed (FRESHLINE:0:1)

Pass 2...

Source compilation complete...

C:\PCB\PPE>

In this case we encountered a warning. Warnings are not fatal; all they do is tell us that we

may have made a mistake on a line of source code, but that the compiler can still generate a

PPE file. The only warning message returned by PPLC is for too many arguments passed to a

The PPL Development Kit

Using PPLC Chapter 4

statement, function or array variable. Since PPLC can safely ignore extra parameters it is not

a fatal error. An example of error messages might look something like this:

C:\PCB\PPL>PPLC HELLO

PPLC Version 1.00 - PCBoard Programming Language Compiler

Pass 1... /

Error in line number 1
Variable not found (STR)

Error in line number 2
Not enough arguments passed (NEWLINES:1:0)

Error in line number 3
Variable not found (STR)

Error in line number 4
Variable not found (EMD)

Error(s) encountered, compile aborted...

C:\PCB\PPL>PPLC HELLO

As with the warnings, we are given the line number were the error was found. Unlike

warnings, however, errors are fatal. The compiler cannot recover from an error and still

generate a PPE file. If an error is found during the compile PPLC will finish the current pass

so that you may see all errors that need to be fixed before the source code can be successfully

compiled.

Compiler Warnings

Anytime a non-fatal syntax mistake is found during the compile a two line warning message is

displayed. The first line will always have the following format:

Warning in line number #

The pound sign will be replaced with the line number where the warning was found. The

second line will be the actual warning text. The following is the only warning message

supported at this time:

Too many arguments passed (K:E:R)

The parentheses will be filled with specific information about the warning. The A will be

replaced with the statement or function (or ARRAY if the problem is with an array) that

generated the error. The Е will be replaced with the expected number of arguments, and R

with the number of arguments actually received.

The PPL Development Kit 19

Сһаріег 4 Using PPLC

Compiler Errors

Anytime a fatal error is encountered a two line error message is displayed. The first line will

always have the following format:

Error in line number #

The pound sign will be replaced with the line number where the error was found. The second

line will be the actual error text. The following is a list of crror messages that may be returned

and an explanation of what each means:

"Bad structure end statement (BEG-END)"

An attempt was made to close a block structure (IF block, WHILE loop, or FOR loop) with the

wrong end statement. IF requires ENDIF. WHILE requires ENDWHILE, and FOR requires

NEXT. BEG is replaced with the type of structure (IF, WHILE or FOR) and END is replaced

with the statement that was used to attempt to close the block structure.

"Block start (IF/WHILE/FOR) must come before block end statement"

A block structure closing statement (ENDIF, ENDWHILE or NEXT) was used without a

matching block begin statement (IF, WHILE or FOR).

"Closing parenthesis not found (EXPR/ARGS/LINE)"

An open parenthesis was found but a matching closing parenthesis was never found. The

expression, argument list or line missing the parenthesis is displayed in place of
ENPR/VARGS'LINE.

"Closing quote not found (LINE)"

An open quotation mark was found but a matching closing quote was never found. The line

missing the quote is displayed in place of LINE.

"Error evaluating constant expression (EXPR)"

PPL requires a constant cxpression (an expression without variables) when defining the size of

array dimensions. If there is anything wrong with a constant expression this message will be

displayed. ЕХРК will be replaced by the constant expression with the error.

"Expression may not end with an operator (EXPR)"

The last term of any expression must be a variable, constant, function or subexpression. If an

operator is found with nothing after it this error will be displayed. ЕХРЕ will be replaced by
the expression with the error.

"IF/WHILE requires a conditional expression to evaluate"

IF and WHILE statements require an expression to evaluate to determine what course to take

during program execution. If that expression doesn't exist. or if it is not surrounded by

parentheses (which are required by PPL) then this error will be displayed.

"IF/WHILE requires a statement after the conditional expression"

IF and WHILE statements require a statement to execute if the condition is TRUE. If that

statement doesn't exist then this error will be displayed.

20 The PPL Development Kit

Using PPLC Chapter 4

"Illegal label (LABEL)"

A label must start with a letter (A-Z) and may contain letters, numbers (0-9) and the

underscore character (_). Although they may be of any length, the compiler will only

recognize the first 32 characters. If a label does not conform to these rules this error will be
displayed.

"Illegal variable name (VAR)"

A variable name must start with a letter (A-Z) and may contain letters, numbers (0-9) and the

underscore character (_). Although they may be of any length, the compiler will only

recognize the first 32 characters. If a variable name does not conform to these rules this error

will be displayed.

"Invalid character found in constant expression (CHAR)"

PPL requires a constant expression (an expression without variables) when defining the size of

array dimensions. Constant expressions only allow +, -, *, /, %, (and) characters in addition

to the numbers in the expression. All other characters are invalid in constant expressions.
CHAR will be replaced by the invalid character from the constant expression.

"Invalid/Missing Operator in expression"

Variables, constants, functions and subexpressions need to be separated by operators. If an

operator can't be found then this error message will be displayed.

"Invalid/Missing Variable/Constant in expression"

Variables, constants, functions and/or subexpressions are required on both sides of binarv

operators. If two operators are found back to back that is an error and will cause this message

to be displayed.

"Label already used (LABEL)"

This error message will be displayed if you use a label name twice. LABEL will be replaced

with the duplicate label.

"Label not found (LABEL)"

This error message will be displayed if you never define a label that is used in a GOTO or

GOSUB statement. LABEL will be replaced with the missing label.

"Missing label"

This error message will be displayed if a label name doesn't follow a colon (used to start а

label definition) on a line of source code.

"Missing variable name(s)"

This error message will be displayed if one or more variable names don't follow a type

declaration keyword.

"No end found for block control statement (IP/WHILE/FOR)"

АП block control structures must have matching beginning and ending statements. This

message is displayed when an end statement doesn't exist for one or more IF. WHILE or FOR

statements.

The PPL Development Kit 21

Chapter 4

22

Using PPLC

"No expression to evaluate"

This error message is displayed when an expected expression doesn't exist.

"Not enough arguments passed (K:E:R)"

АП statements and functions expect a certain minimum number of arguments as input. If too

few parameters are passed this message will be displayed. K will be replaced with the

statement or function (or ARRAY if the problem is with an array) that generated the error. E

will be replaced with the expected number of arguments, and R with the number of arguments

actually received.

"Reserved constant name (NAME)"

PPL has a set of reserved constant names. They are like variables that never change value. If

you try to create a variable with the same name as a reserved constant this error will be

display. NAME will be replaced with the reserved constant that generated the conflict.

"Too many closing parenthesis (EXPR/ARGS/LINE)"

An open parenthesis was not found to match a closing parenthesis. The expression, argument

list or line missing the parenthesis is displayed in place of EXPR/ARGS/LINE.

"Unable to allocate memory (MSG)."

This is a generic error message that may or may not be displayed with a line number. If it is

displayed with a line number, the error occurred while performing a specific operation. MSG

will be one of the following: CONVERTING EXPRESSION (translating it from the human

readable source format into the PPE tokenized format), LABEL DEFINITION (adding the

label to the label list maintained during the compile), or VARIALBE DECLARATION

(adding the variable to the variable list maintained during the compile).

"Variable name already used (VAR)"

This error message will be displayed if you use a variable name twice. VAR will be replaced

with the duplicate variable name.

"Variable not found (VAR)"

This error message will be displayed if you haven't yet defined a variable that is used in an

expression or as a parameter to a statement. VAR will be replaced with the undeclared

variable name.

The PPL Development Kit

Using PPLC Chapter 4

Compiler Exit Codes

If you build projects via batch files, make utilities, or integrated text editors with compile
options, the following exit codes (errorlevel in BAT file parlance) may prove useful:

0 This exit code is returned after a completely successful compile.

Indicates that one or more warnings occurred during a compile but that the

PPE file was successfully created.

2 PPLC was started without a file name specified on the command line.

The file name specified could not be found.

4 One or more errors occurred and the compile was aborted without

generating a PPE file.

The PPL Development Kit 23

Chapter 4

24

Using PPLC

The PPL Development Kit

>
A PPL Tutorial

A PPL Tutorial Chapter 5

A PPL Tutorial

Although very similar to BASIC and BAT file programming. PPL is not identical and will

take a little practice to master. Skilled programmers with prior experience should have no

problem making the transition. However, new or inexperienced programmers shouldn't fecl

left out since PPL is actually quite simple. This section will take you through writing several

programs of varying complexity and explain why each is structured the way it is. Built in PPL

constants, functions, statements, types and variables are in bold to help you identify those

portions of the program that you can look up in the reference section for further explanation.

"Hello, World!"

It is traditional for the first program written in a new language to display "Hello, World!" So.

being fond of tradition, we shall write that one first, and as simply as possible:

; HELLOl.PPS - "Hello, World!" #1
; Display (print) the string and terminate with a newline

PRINTLN "Hello, World!"

There is it, your first PPL program! Not much, huh? However, it does teach you one

important concept, and that is that the PRINTLN statement is used to display (or print)

information to the display (local and remote) and terminate it with a newline (carriage return

and line feed).

Same Thing Done Differently

A valuable lesson to learn early on is that there are many ways to do even the simplest things.

For example, each of the following code fragments does the exact same thing: displays "Hello.

World!" and terminates it with a newline:

; HELLO2.PPS - "Hello, World!" 82

; This one displays it as two strings pasted together

PRINTLN "Hello, “, "World!"

; HELLOJ.PPS - "Hello, World!" #3
; Now we will display the string first without the newline,
; then print the newline with a separate command

PRINT "Hello, World!"

NEWLINE

; HELLO4.PPS - "Hello, World!" #4
; Finally we will display it to the local screen first, then
; to the remote screen, with two separate statements

SPRINTLN "Hello, World!"
MPRINTLN "Hello, World!"

As you can tell, each one does the same thing but in different ways. The moral of this story is:
If at first you can't do something the way you thought it should be done, look for another way

of doing it. Just about anything is possible if you look for a way to accomplish it and don't

give up after your first attempt.

The PPL Development Kit 27

Chapter 5 A PPL Tutorial

Fancy Variations

Now that we know how to display information to the screen, let's try to spice it up a little. The

first thing we can try is adding color:

; HELLOS.PPS - "Hello, World!" #5

; Display the text in color (Bright white letters on a blue background)
PRINTLN "@X1FHello, World!"

Notice that we were able to use the PCBoard @X code in the string just like in display files to

change the color. And. just like in display files. @X codes are automatically stripped out if

the user doesn't support color displays. But even this is still kind of plain. What would be

nice is to display the string in the middle of the display and wait for a key to be pressed:

; HELLO6.PPS - "Hello, World!" #6
Center the text on the display

CLS ; first clear the screen and position at the upper left
NEWLINES 11 ; Move down 11 lines to get to the center line

FORWARD 33 ; Move right 33 spaces to get to the correct column

PRINTLN "@X1FHello, World!"

STRING s

WHILE (s - "") LET s - INKEY() ; Loop until a key is pressed

Still not a lot of code, but it does things much differently than the original efforts. Now that

we have this, let's try to change from displaying World to the users first name. As previously

mentioned, there is more than one way of doing this. Here is an attempt that requires no user

input:

HELLO7.PPS - "Hello, World!" #7
; Center the text (with users name) on the display

STRING s

TOKENIZE U МАМЕ () ; Separate the name into words (tokens)
LET s - GETTOKEN() ; Grab the first name (word or token)

LET s = LEFT(s,1)+LOWER(RIGHT(s,LEN(s)-1)) ; Force it to mixed case
LET s = “@XiFHello, "«s-«"!'" ; Build the complete string to display
CLS

NEWLINES 11

FORWARD (80- (LEN(s)-4))/2 ; Move right to the correct column
PRINTLN s

LET 5 = ""

WHILE (s - "") LET s - INKEY()

OK, there are a couple of statements here are really deserve more explanation. The first is:

LET s = LEFT(s,1)«LOWER(RIGHT(s,LEN(s)-1)) ; Force it to mixed case

Let's assume that just before this line s had the value "SCOTT". Anyway. remembering that

we always evaluate from the innermost parentheses to the outermost (after substituting

variable values for variable names), here is how that expression would be evaluated:

The original statement
LET 5 = LEFT(s,1)«LOWER(RIGHT(s,LEN(s)-1))

Step 1: Replace instances of s with "SCOTT" (the value of s)

LET в = LEFT("SCOTT",1)«LOWER(RIGHT("SCOTT",LEN("SCOTT^) -1))

Step 2: Evaluate LEN("SCOTT") (the innermost parentheses)
LET 5 = LEFT("SCOTT",1)-*LOWER(RIGHT("SCOTT",5-1))

28 The PPL Development Kit

A PPL Tutorial Chapter 5

Step 3: Evaluate 5-1

LET s = LEFT("SCOTT",1)+LOWER (RIGHT (“SCOTT", 4))

Step 4: Evaluate RIGHT("SCOTT",4)

LET в = LEFT("SCOTT",1)*«LOWER("COTT")

Step 5: Evaluate LEFT("SCOTT",1)

LET s = "S"«LOWER("COTT")

Step 6: Evaluate LOWER("COTT")

LET 5 - "S"«"cott"

Step 7: Finally, evaluate "S"«"cott")

LET s - "Scott"

Step 8: Now that we have a final result, assign it to s

LET в = "Scott"

Notice how we always work from the innermost levels and evaluate them as we work our way

out? This sort of debugging can be very useful on paper when trying to find out why

something isn't working quite right.

The second statement that may not be immediately clear is:

FORWARD (80-(LEN(s) -4))/2

We've already seen the FORWARD statement used to move the cursor foward a specified

number of columns on the current line. The part that could get confusing is the expression

used to tell PPL how many columns to move the cursor. Let's break it down and see why we

wrote it this way:

The original equation
(80- (LEN(s) -4))/2

Step 1: Find the length of s ("@X1FHello, Scott!" from our example)

(80- (17-4)) /2

Step 2: Subtract 4 from the length (со adjust for the @X1F color code)

(80-13) /2

Step 3: Subtract 13 from the screen width (count of total spaces)
67/2

Step 4: Divide total spaces by 2 (half on one side, half on the other)

33

(Don't forget that 67/2 is integer arithmetic, hence the answer of 33 instead of 33.5 as we

would get with floating point arithmetic.) So, now we know how many columns to the right to

move the cursor. Not very hard at all, huh?

PPL Applications as Commands

It is possible to replace existing commands as well as create new commands with PPL.

Following are a couple of tutorials on how to implement commands. Remember, new

commands are installed іп the CMD.LST file in PCBSetup; just enter the command letter or

The PPL Development Kit 29

Chapter 5

30

A PPL Tutorial

keyword, the minimum security level necessary to access the command, and the path and file

name of the PPE file. Optional parameters may be specified after the path and file name as

space permits. These optional parameters are accessed as tokens with the GETTOKEN
function and statement. Note that user specified parameters may also be accessed via the

GETTOKEN statement and function, but only if the SysOp doesn't specify any parameters in

the CMD.LST file (in other words, SysOp specified parameters override user specified

parameters).

Operator Page

One easy thing to replace is the operator page command. With PPL you can completely

control how long the page will last, how long each beep will be, and the time between beeps.

Let's take a look at a sample operator page module:
KEE KEKE ERE жз Хей ЖЖЖ KKK EKA EKA KKK KEKE
4

; OPPAGE.PPS - Ап O command (operator page) replacement

ЕЕЕ ЕАД тж лжжхе ж АДАД... кке Жжке т Хе eee Keeee жж
"

; Variable Declarations

TIME

TIME

ТІМЕ

INTEGER

INTEGER

INTEGER

INTEGER

STRING

STRING

STRING

STRING

STRING

STRING

STRING

pTime

sTime

eTime

x

У
і

The time at which the user requested the page

' The start time at which paging is allowed for all

' The end time at which paging is allowed for all

Temporary storage for cursor x position

' Temporary storage for cursor y position

' Index variable for page loop

maxTries ' The maximum tries allowed to page the SysOp

msg

ynAàns

BEEP

CR

ANSI

HOME

CLREOL

A variable to hold the message to be displayed
' to the SysOp

А generic variable to hold а yes/no response

' An ASCII beep

' An ASCII carriage return

' ANSI escape sequence header

' ANSI home sequence

" ANSI clear to end of line sequence

prea eee eee ee ыы fbl il lll да koi tk ork tite

: Initializations

LET pTime = TIME() ' Start time of the page

LET sTime = READLINE(PCBDAT(),189) ' Read these two from the
LET eTime - READLINE(PCBDAT(),190) ' PCBOARD.DAT file

LET maxTries - 5

LET BEEP = CHR(7)

LET CR = CHR(13)
LET ANSI = СНЕ (27) +"°["

LET HOME = ANSI+"0;0H"

LET CLREOL = ANSI+"K"

p Re ll ee rk eet ki ko kkk kkk itt

The PPL Development Kit

A PPL Tutorial Chapter 5

; Main Program

' If pagins is allowed right now or if the user has SysOp level access

IF (((pTime»-sTime) & (pTime<=eTime)) | (CURSEC()>=SYSOPSEC())) THEN

‘ If SysOp level access or caller hasn't already paged
IF ((CURSEC() »- SYSOPSEC()) | !'PAGESTAT()) THEN

“Тһе user may page (either a valid time or high security level)

DISPTEXT 579,LFBEFORE ' Display the paging SysOp message

DISPTEXT 97,LFBEFORE ' Display the time and abort information

‘ Tell SysOp what to do
LET msg = SPACE(15)«"Press (Space) to acknowledge Page, "

LET msg = msg+" (Esc) when done."

GOSUB topLineMsg

FOR i - 1 TO maxTries

' Display a walking dot and beep at remote caller and SysOp
PRINT "."

MPRINT BEEP

GOSUB localBeep

' If SysOp hits the space bar

IF (KINKEY() - " ") THEN
LET msg - "" ' Clear the SysOp message

GOSUB topLineMsg

CHAT ' Start SysOp chat
PAGEOFF ' Since we've chatted, turn off page indicator

END ' Exit

ENDIF

' If user aborted page, set up to exit loop

IP (ABORT()) LET і = maxTries+1l

NEXT

' Clear the SysOp message
LET msg - ""
GOSUB topLineMsg

' If user aborted page
IF (ABORT()) THEN

RESETDISP ' Reset the display so more info may be displayed

NEWLINE ‘ Send а newline

END ' Exit

ELSE

NEWLINE ' Otherwise a newline is sufficient

ENDIF

ENDIF

ENDIF

' The user shouldn't be allowed to page (or page not successful), so

PAGEON

DISPTEXT 128,LPBEFORE-NEWLINE ' SysOp not available

LET ynAns = NOCHAR() ' Default to no
PROMPTSTR 571,ynAns,1,"",YESNO-NEWLINE-LFAFTER-FIELDLEN-«UPCASE

The PPL Development Kit

' Turn on paged indicator

3l

Chapter 5

32

A PPL Tutorial

ІР (ynAns = YESCHAR()) KBDSTUFF "C"+CR+"Y"+CR ‘ If yes do a comment

END

pe Re ROC CU e e RR e e ke Re e e e e e e e e EERE EE EEE AE ERE EEE EEE EE EE ee e gm

:topLineMsg ' Clear the top line of the BBS screen and display a message

LET x

LET y

GETX()-1 ' Save the cursor position

GETY()-1

SPRINT HOME,CLREOL ' Pos in upper left of display and clear the line

SPRINT msg ' Display message to the SysOp

SPRINT АМЅІ+8ТВІМС (у) +"; "+STRING(x)+"H" ' Restore original position

RETURN “ Return to the calling routine

калада а залал алад лав ААА ДАЛА KKK KEK eae eke KKK dn d n
4

:localBeep ' Routine to alert the SysOp (not the caller)

SOUND 110 Sound a 110 hertz tone locally

DELAY 2 Pause for a couple of clock ticks

SOUND 220 Sound a 220 hertz tone locally

DELAY 2 Pause for a couple of clock ticks
SOUND 440 ‘ Sound а 440 hertz tone locally
DELAY 2 Pause for a couple of clock ticks
SOUND 880 Sound a 880 hertz tone locally

DELAY 2 Pause for a couple of clock ticks
SOUND 0 Turn off the speaker

DELAY 10 ' Pause for the remainder of the clock ticks

RETURN ' Return to the calling routine

KKK KKK KKK KKH KKK KKK KKK KKK Keke Kea EK Kee
,

This PPL application functions almost identically to the built in operator page command. It

really only does three major things differently. The first is the length of the page. PCBoard's
built in O command waits for thirty seconds (fifteen beeps at two seconds between beeps) for

the SysOp to respond. This PPE implements a variable length page which is initialized to five

tries by default (the length of each try depends on the localBeep subroutine). It can easily be

changed by just changing the value maxTries is initialized to. For example:

LET maxTries = 15

This line, used instead of the default in the listing above, will change the operator page PPE to

try to page the SysOp fifteen times (just like the default O command). The second major

difference is way it pages the SysOp. PCBoard uses a standard beep every two seconds when

paging the SysOp. This PPL program will sound a custom alarm sound once per page

attempt. Since the default localBeep subroutine takes about a second, our PPE will attempt

paging the SysOp for about 5 seconds. Again, you could change that rewriting the localBeep

routine to make different sounds and/or to use different delays. As an example:

:localBeep ‘ Routine to alert the SysOp (not the caller)

SPRINT BEEP ' Beep at the SysOp

DELAY 36 ' Wait for approximately two seconds

The PPL Development Kit

A PPL Tutorial Chapter 5

RETURN '" Return to the calling routine

Again, with this change we are more like the built in O command in that we will beep at the
SysOp once every two seconds. Finally, the third major difference is who is allowed to page
the SysOp. Normally the SysOp may be paged during a certain set of hours, but only if the

page bell is on. This PPE file ignores the page bell on/off status (since it is easily forgotten or

accidentally changed when setting things up) and allows all to page the SysOp during the page

window. Also, normally the O command is an all or none proposition; that is, everyone can

page during the defined times and no one can page any other time. This PPE allows everyone

to page during the defined times, and it allows users with SysOp level access (as defined in

PCBSetup) to page anytime! Nifty, huh? Analysis of the code should explain just about
everything else that is going on (of course, you will probably want to refer to the reference

section if you find a statement or function that you don't understand).

Start

PPL is not limited to replacing existing commands. You can also create new commands with

it. The following is the source code to the START command (used on the Salt Air BBS to give

SysOps information necessary to start BETA testing software):
BZZZRSASREERAERERSRSERERZRSERERERERSERSERSARESSRERSRSESESSESSSSASRSRSSBSSSASRSSSSSZSASERSSASRSRASI
,

; START.PPS - A new command used to start BETA testing PCBoard

Ны ыы ыы ыы ыы а RR Re ew

; Variables

INTEGER minSec ' The minimum security required to BETA test

STRING CR ' A carriage return

pe e ec e e e e RO e e e e T e e ee e eK e e e eK KU KR RR RUE EEUU X OK RU X ROI EUR RU UN

; Initializations

LET minSec - 20

LET CR - CHR(13)

MZZZZZEREZARASBASASESASSESSZASSASRASSZERSSSESERSESRSSSRSARARSARSSESSARSSSRERARRRERRSSARSSI ; .

; Main Program

' If the user doesn't have current support

IF (CURSEC() « minSec) THEN

DISPFILE PPEPATH()+"SBAD",GRAPH+SEC+LANG ' Display information file

END ' Exit PPE

ENDIF

DISPFILE PPEPATH()+"SOK" , GRAPH+SEC+LANG ' Display information file

' If the user isn't in conference 6 force them to join

IP (CURCONF() <> 6) KBDSTUFF "J 6 NS"«CR

' Force them to read messages pertaining to the start of the BETA test

KBDSTUFF "R O 61977+"+CR

BZZIZZZEZZZASSRZARSRSESERRZSSSEASERARERZASERSESASSRESSESESSERSEZRRSRSSRSRSSSARSESSARRSASAJ
4

The PPL Development Kit 33

Сһаріег 5 A PPL Tutorial

34

This is a very simple (but useful) PPL application. To sum things up: first the users security

level is tested. If it is less than our minimum required security level to BETA test, we display

a file to the user (that could have graphics, security, and/or language specific variants) and

exit. Otherwise we display a file with information to the caller on starting the BETA test. If

they are not in conference 6 (the BETA conference on Salt Air) we stuff a command to join 6

into the keyboard buffer, and then we force them to start reading messages that have some

additional information. It is as simple as that!

PPL Applications as Script Questionnaires

Very powerful script questionnaires can be written with PPL. To install a PPE file as a script
questionnaire, just enter the name of the PPE file (including the extension) in the SCRIPT

field of the SCRIPT.LST file. Here is an example of what a PPL based script might look like:
KEK KKK ЕЕ Д KKK KAKA хе KKK Khe keh keke
,

; ORDER.PPS - А script questionnaire to order a product

eke kkk kee eke reer KKK KKK KEKE KKH eee eee Kee eae eee ee
Й

; Variable Declarations

STRING Question ' The question to ask the user

STRING Answer ' The users answer

Pt ee ee ee ee ee ee ee ee ee ee 6.4.1
,

; Main Program

' Display the script header
NEWLINE

PRINTLN "QXO0F--2-2-2-2-2------- "

PRINTLN "We have several items available for sale. From"

PRINTLN "Hardware to software, we have products that fit your"

PRINTLN "needs and wants. If we don't have it, just ask!"
PRINTLN "--- "

NEWLINE

' Confirm that the user wants to answer the questionnaire

LET Answer - NOCHAR()

PROMPTSTR 84,Answer,1,"", YESNO+UPCASE+FIELDLEN

NEWLINE

' If user answers other than affirmative then stop script
IF (Answer <> YESCHAR()) STOP

NEWLINE ' Display a blank line for spacing

' List products available to the user

PRINTLN "GXOFWe have the following products available for sale:"
NEWLINE

PRINTLN " 1. Complete 80486 system with SVGA video system ($1000 US)"
PRINTLN " 2. Whiz-bang hard-drive ($500 Australian)"
PRINTLN " 3. Plain paper bag software ($5 Monopoly)"

Ask the user which product

LET Question - "Which item would you like to order?"
GOSUB ask

The PPL Development Kit

А PPL Tutorial Chapter 5 -——= --- m мпарег >

' List shipping options available

PRINTLN "GX0FYou may choose from the available shipping options:"
NEWLINE

PRINTLN " 1l. U.S. Mail"

PRINTLN " 2. United Parcel Service"

PRINTLN " 3. Federal Express"

' Ask the user how to ship

LET Question - "How would you like it shipped?"
GOSUB ask

' List payment options available

PRINTLN "GXOFYou have the following payment options:"
NEWLINE

PRINTLN "1. Visa"

PRINTLN " 2. MasterCard"

PRINTLN " 3. American Express"
PRINTLN " 4. Discover"

PRINTLN " 5. COD"

' Ask the user how he wants to рау

LET Question - "How would you like to pay?"

GOSUB ask

Confirm that the user wants to save his answers
LET Answer - NOCHAR()

INPUTYN "Do you want to save your answers (ENTER-no)",Answer,GXOE

NEWLINE

' If user answers other than affirmative then stop script
IF (Answer «» YESCHAR()) STOP

NEWLINE ' Display a blank line for spacing
END ' Exit script

i ie Ххх жи тж ХЕ зХхижкхжжжех к еже ҰЖжжа Хе хх жекке хжхатетиеежжетттжж
;

:авК ' Subroutine to ask questions and store answers

NEWLINE ' A blank line for spacing

PRINTLN "GXOE",Question ' Display the question

LET Answer - "" ' Initialize answer to empty
INPUT "",Answer ' Get answer with no prompt on line

NEWLINES 2 ' A couple of newlines for formatting

LET Question = STRIPATX(Question) ' Remove @X codes from question

РРОТІМ 0,"Q: ",Question ' Write the question to the file

FPUTLN 0, "А: ",Answer ' Write the answer to the file

RETURN ' Return to the caller

keer eek eke Kee eee eee
H

There are several items of interest in this program. The first is thc use of file channel 0 in the

ask subroutine without ever opening that channel. When a PPE file is installed as a script

questionnaire, PPL automatically opens channel 0 in write mode for append access to the

answer file. This way your application need not know the name of the answer file; all it needs

to know is that channel 0 is where it's output should go. The second item of interest is the

STOP statement. Normally the END statement would be used to exit a program (and commit

The PPL Development Kit 35

Chapter 5 A PPL Tutorial

all information to the answer file in the case of a script questionnaire). STOP may be used to

end script questionnaire processing and abort writing information to the answer file. Finally,

the ask subroutine itself. This routine is used to ask all questions that should be written to the

answer file and to perform the actual writing of information. Because we've used the single

routine we can ask all questions and log them to the answer file in a consistent manner.

Additionally, by not having to write the routine three (or more) times (once per question)

we've saved ourselves sixteen lines of code and avoided the possibility of introducing bugs by

not making changes to all three copies (when necessary) at the same time or in the same way.

PPL Applications as PCBTEXT Display Prompts

36

Compiled PPL applications may be attached to PCBTEXT display prompts. This may be done

to change the way in which a question is asked (or whether it is asked at all) or to provide

extra information that would not normally be available. To install a prompt replacement PPE,

use MKPCBTXT (о edit your PCBTEXT file. Select the prompt to replace and enter an

exclamation mark in column one, followed immediately by the path and file name (including

extension) of the PPE file. Optional parameters may be specified after the path and file name

as space permits. These optional parameters are accessed as tokens with the GETTOKEN

function and statement.

Password Expiration Warning

PCBoard 15.0 has enhanced password support. One of the features of the new password

system is the abilitv to set an expiration date for a users password. When this is done the user

will be warned a certain number of days before the password expires that they will need to

change their password soon. This is done to give them an opportunity to change it before it

becomes mandatory. Prompt 711 in the PCBTEXT file is displayed during the warning period

to them. Unfortunately, if a user is calling in via a script and isn't there to see the one line

prompt on screen, he will never know about the impending password expiration until it has

already expired. This PPE file attempts to remedy that by sending the user a message in

addition to the prompt:
kkk kek keke hha ARR KEKE KKK KARE RK KH
‘

; PWRDWARN.PPS - A replacement for prompt 711 in the PCBTEXT file
; to warn the user about impending password expiration

failure both on screen and via a message

we oe nde e Oc ee dee dee dele dede de eode ce e krri e ce ode oe ЖЖ ХЖА кжкжкжиж4Жижжкіжзтежзйзжіжклійжжжікітктжж ;

; Variable Declarations

INTEGER conf ' The conference in which to post the message
STRING to ' The user to send the message to
STRING from ' The user the message is from
STRING subj ' The subject of the message

STRING msec ' The security of the message

DATE pack ' The pack out date of the message
BOOLEAN rr “ Return receipt flag
BOOLEAN echo ' Network echo flag

The PPL Development Kit

A PPL Tutorial Chapter 5

STRING file ' The file with the message text

ee ee eee ee ee de ede eode oe ede c cde e e ode e e ee ode de e dede ede de oe e e eode e de ode oe ee o e o 6
4

; Initializations

LET conf - CURCONF() ' Post message in the current conf
LET to =" ' Default to the user online

LET from - "SYSTEM DAEMON" ' Any 'user' may leave the message

LET subj - "Password Expiration" ' The subject of the message
LET msec - "R" " Receiver only message

LET pack = DATE()+3 ' Pack it out іп 3 days

LET rr - FALSE ' No return receipt requested
LET echo - FALSE ' No need to echo this message

LET file = PPEPATH()+PPENAME()+".MSG" ' Path and file name of message

Sit tS ee ee eee eee eee eee eee eee eee eee ee eee ee eee eee ee ee ee ee)
Й

; Main Program

' First we need to tell the caller on screen

PRINT "Your password will expire in @OPTEXT@ days.

PRINTLN "Use the (W) command to change it."

Now let's leave the caller a message. We do this in case he is
calling in an automated fashion (via script) and won't see the on
screen warning. This way the user will still be notified (if he
downloads and reads mail) that his password will soon expire.

MESSAGE conf,to,from,subj,msec,pack,rr,echo,file

"ЖЖізйжА ЖЖ ғі жж зҰ жз 44 йҰХж ез ЖҰАХҰ ж йҰХхж ЖҰ Ғихкжял БАБЕ]
,

This is a very simple application. Because we've replaced the prompt with the PPE. we go

ahead and display the original default prompt so that we remain compatible. Then we

generate a message for the user with basically the same information. Hopefully he will see this

message just in case he doesn't see the on screen prompt.

Logon Language Prompt

One of the biggest concerns of adding any new feature is that it breaks compatibility. Of

course, breaking compatibility can't be the only reason to decide not to add something. but it

should be weighed carefully against the benefits. On the Sa/t Air BBS we had never used the

multi-lingual capabilities for the support board. (Don't worry, we've tested them extensively

on our in-house test systems!) With all of the new abilities of PPL, we wanted to add some

highly customized prompts to assist us (and our SysOps) in tech support. At the same time.

we didn't want to break everyones scripts. So we created two languages. onc with the custom

prompts and one with the standard prompts. Now people can select the one they want. The

only remaining problem was that the language selection prompt might break peoples scripts

(since we weren't using it before). So what we did was add a PPE to the language selection

prompt that would time out after 20 seconds. This way we can have multiple languages and

keep everybody happy without breaking scripts. (A lot of explanation for such a simple PPE,

huh?)

The PPL Development Kit 37

Chapter 5 A PPL Tutorial

Ны ыы e OR e e e e e eC t e e e Oe e e e e e c e e e ны ыы ыы а ыы

; LANGUAGE.PPS - A replacement for prompt 387 in the PCBTEXT file
; to prompt for the desired language with а 20 second
i timeout if the user doesn't respond (just in case the
i user is automated we don't want to break their script)

ыы ааа OR e RR ORE RC TR KO e ааа ана аа e e te

; Variable Declarations

STRING prompt ‘ A variable to hold the language question
STRING lang ansr ' A variable to hold the users response

STRING CR ' A carriage return character

ыы ада дада ааа REE ааа UE RO AE e n

; Initializations

LET prompt - "Enter Language % to use (enter)-no change"

LET CR = CHR(13)

ЕА ee I

; Main Program

' Ask the user what language they want to use

INPUTSTR prompt, lang_ansr,@X07,2,MASK_NUM() , LFAFTER+AUTO

' If the user didn't answer the question (empty response)
IF (LANG ANSR = '") THEN

We need to stuff the keyboard buffer with a CR so that
' PCBoard won't ask a second question (without a prompt)

KBDSTUFF CR

ELSE

Otherwise we just need to stuff the answer so that PCBoard
' knows that the PPE asked the question and got the answer
KBDSTUFF lang ansr

ENDIF

END

ны ааа ааа e e Kk Uk Ck Ck e RO OK KON EON e e X e e e

An important point must be made here. If you want your PPE to get the input for the prompt

and pass it to PCBoard, you must stuff the response into the keyboard buffer. If no response is

required or desired then you should simply stuff a carriage return (CHR(13)) as we did above.

If you want PCBoard to go ahead and ask the question, then you will need to print a prompt

before exiting the PPE so that the user will know that a response is expected (and what the
response should be).

38 The PPL Development Kit

A PPL Tutorial Chapter 5

PPL Applications in Display Files

For those times that you need really precise control of what the user is seeing you can embed a
PPE within a display file. To do this simply include a line with an exclamation mark in

column one, followed immediately by the path and file name (and extension) of the PPE file.

Optional parameters may be specified after the file name. However, nothing else should be on

the line after the file name or parameters. Here are a couple of examples of what you might

use a PPE within a display file for.

Node Specific Display Files

We sometimes have a need to display a file to callers on a particular node (for example, our

extended support nodes). However, we still want to display the standard news to them as well.

and we don't want to have to maintain a separate NEWS file for each node (all we want to do

is maintain the differences). With this PPL application we can force the NEWS file (or any

display file) to display an additional, node specific file at a particular point:
Е.Д... ee ee ee жез ee ee ee ee ee eed
,

NODEFILE.PPS - A PPE to be used from any display file.
By default display files can have security, graphics,
and language specific variants. This PPE allows the
addition of node specific variants while continuing to
allow the other variations that are shared among all
nodes. 44 4.4 4. Sa “. se

eRe KKK EK KKK хе хз е Хх жей кі А.Д... К.Д... А.Д... п... А.
4

; Variable Declarations

STRING file

“ЖжкійжжізійтғййайййЖти зия жж Ж ee eee КЖ Хе тж е Хже 4Хежі жж ез жж кез хжіажа т ;

; Main Program

' If no parameter was passed then exit

IF (TOKCOUNT() - 0) END

' The file we are looking for is tokenized from the command line and has
' a ### extension (### is the node number)
LET file = GETTOKEN()-*"."-RIGHT("OO"«STRING(PCBNODE()).3)

' If the node specific news file exists, display it
' (security/graphics/languages variants aren't allowed because we use
' the file extension to indicate the node the file should be used for)

IF (EXIST(file)) DISPFILE file,DEFS

END ' Exit

EZIZZZZZEREEZEZEZIERZZZEREEZERREREZEREZERRZERRZSARSRZERSEZZZRZRRRRSZRRSRRRSRRARSARSESR
,

Interactive Welcome Screens

Though ANSI animated displays can go a long way to improving the look and feel of your
BBS, they come with a cost: they are large. In fact, many people don't use them just because

of the time involved in the transmission (especially to 2400 bps callers). However, there is a

The PPL Development Kit 39

Chapter 5 A PPL Tutorial

way around this with PPL. We can write a program that will display a file to the caller in

‘pieces’ while prompting for input from the caller. After each 'piece' it will check to see if the

user has hit a key and act on it as needed. If no key was pressed, it will display the next piece

and check for keys again.
.ЖЭжежкжейжжйзтжктк тк к ХЖҰзҰ Хей ЖжйҰжкжк Ккійзі жжте RE RRR RRS RRR Д.А...
,

; WELFIRST.PPS - A PPE to be used іп а WELCOMEG file.

; Because of the time required to display ANSI animation
; to low speed callers it is usually avoided. However,

; this PPL allows you to send a long ANSI animation file
; in pieces while waiting for the user to enter his
; first name. WARNING! Do not use in a WELCOME file,
; only WELCOMEG or WELCOMER, as it assumes ANSI graphics

; are available.

EEK йийяй жш ғи KEKE 4Жй EEK та к ЖҰЖ йе KKK Kee жж хх EEE ;

; Variable Declarations

BOOLEAN exitflag ' Flag to determine when we should exit

INTEGER x ' Last column position of cursor

INTEGER y “ Last row position of cursor

INTEGER c " Last color used

STRING fn ' The first name of the user

STRING s ' A miscellaneous string variable

STRING file " The ANSI animation file to display
STRING line " The ANSI animation line to display

STRING BS " An ASCII backspace character
STRING CR " Ап ASCII carriage return character

REE EEE EAE EHH Д.А... ДДД. АЛААД АДАБ К ААДА. eae Kea
Й

; Initializations

LET BS = CHR(8) ' Backspace

LET CR = CHR(13) ' Carriage return

Ны ааа ыда e e c T e да e e ke e o e e e Re eK e eK даа дала E ke RE e

; Main Program

ІР (TOKCOUNT() = 0) END '" If a file wasn't specified, exit

LET file - GETTOKEN() ' Get the path and file name to display
IF (!EXIST(file)) END ' If the file doesn't exist, exit

FOPEN 1,Ғі1е,О RD,S DN ' Open channel 1 for read/deny none access

ANSIPOS 1,23 " Position on the bottom line of the display
PRINT "GXOEWhat is your first name? " ' and display the prompt

' While the user hasn't exited and no file errors have occurred
WHILE (!exitflag & !FERR(1)) DO

ЕСЕТ 1,line ' Get а line со display
PRINT line ' Display it

40 The PPL Development Kit

A PPL Tutorial Chapter 5

LET x = GETX() ' Save the cursor position

LET y - GETY()

LET c - CURCOLOR() ' Save the current color

ANSIPOS 1,23 ' Position at the bottom of the display

PRINT "GXOEWhat is your first name? " ' and display the prompt

DEFCOLOR ' Change to the system default color

LET s - INKEY() ' Get а keypress from the user

IF ((5 >= " ") 6 (s <= "-") & (LEN(fn) < 50)) THEN

‘ If it's ASCII append it

LET fn = fn + s

ELSEIF ((s == BS) & (LEN(fn) > 0)) THEN

' If it's a backspace remove the last character

LET fn = LEFT(fn,LEN(fn)-1)

ELSEIF (s == CR) THEN

' If it's a carriage return append it and prepare to exit

LET fn = fn + s

LET exitflag - TRUE

ENDIF

PRINT fn," ",

ANSIPOS x,y

COLOR c

ENDWHILE

BS ' Display the first name

Restore the last cursor position

" Restore the last color

FCLOSB 1 ' Close the file

‘ If we exited

ІР (!exitflag)

ANSIPOS 1,23
DEFCOLOR

CLREOL

KBDSTUPF fn

due to a file error and not a carriage return

THEN

' Position at the bottom of the display

' Change to the system default color

' Clear to the end of the line

' Stuff the name into the keyboard buffer for INPUTSTR

LET s - "What is your first name" ' Initialize the prompt

LET fn = "" ' Clear out the first name

INPUTSTR s,fn,@X0E,50,MASK_ASCII(),DEFS ' Finish getting the name

LET fn - fn * CR ' Append a CR to the end

ENDIF

CLS ' Clear the screen
KBDSTUFF fn '

END ' Exit the

MXZIZIIZIIIZSIRIZIEZZIRZREZRSEZRRERZRSAZEEZEEERRZRRERERERSZRRRRSRSERERRRRSRERRRARRRERASA
А

Тһе PPL Development Kit

Stuff the first name into the keyboard buffer

PPE file

41

Chapter 5 A PPL Tutorial

42

The main WHILE loop is actually quite simple once you understand what it is doing. First,

read a line from the ANSI display file and print it to the screen. Second, save the last cursor

position and color and display the first name prompt. Third, get a keystroke (if available) and

process it (either add it to the string, remove the last character from the string if a backspace,

or add it to the string and set the exit flag if a carriage return). Fourth, display the name with

any changes since the last display. Finally, loop back up to the top and keep doing these four

steps until the user hits enter or we reach the end of the file. The file that is being displayed
should not have any single line longer than 256 characters. Most ANSI drawing and

animation programs allow you to specify the maximum line length to save. A short line length

(such as 32) will slow down display of the animation but will check the keyboard and serial
port more often. A longer line length will speed up the display but will give the user fewer

opportunities to enter his name.

PPL Applications as Display Menus

Finally, you can replace menu files (such as BRDM, DOORS, DIR, etc.) with PPE files. To do

this simply create a PPE file with the same name as the menu to replace and store it in the
same directory as the main menu file. PCBoard will automatically find it and use it. Here is a

sample PPL based menu for a DOORS listing:
fe hee ee ee ee e cde ee de ede de cde ee de ede de ie cc die cie ie e ie dede cde eode cde ode esie n de n t
4

; DOORS.PPS - А PPE to be used in place of the DOORS menu file.
; This PPL application is designed to ргоуіде a hot key
; interface to door selection.

ke KK ae KKK eK KKK KEK KKK KKK KKK era r
,

; Variable Declarations

BOOLEAN exitflag ' Flag to indicate when to exit the PPE

INTEGER i ' A miscellaneous index variable
INTEGER x ' The cursor column to display the whirly-gig

INTEGER y ' The cursor row to display the whirly-gig
INTEGER off The offset of the whirly-gig in char array

STRING пате (25)

STRING Ссһаг (3)
STRING key

STRING CR

A list of door names
An array of whirly-gig animation
The users keypress

An ASCII carriage return character

Ны ы алада e e EE e e e e e e E Oe e de ke e e e de c e e e e e de n e e e e c ee de e e d e

; Initializations

LET exitflag - FALSE

FOR i = 0 TOÀ These should be initialized to the

LET name(i) = "DOOR"«STRING(i) ' actual door names or nothing ("")
NEXT ' for that letter to abort the PPE
FOR i = 5 TO 25 ' menu

LET name(i) - "" “ NOTE that А = 0, В = 1, etc, Z= 25
NEXT

The PPL Development Kit

A PPL Tutorial

LET char(0) = "/"

LET char(1) = "-"

LET char(2) = "\"
LET char(3) = "|"

LET CR - CHR(13)

Chapter 5

ДА Д... Д.Д. Д.Д... Д.Д... 4 лез та аже жж ж тж жж ж жж ee жж ҰЖжжтжжіжжіжзжтжтт
4

; Main Program

DEFCOLOR '

CLS

' Display the PPE display file

Change to the system default and clear the screen

(base name » alternates)
DISPFILE РРЕРАТН () +РРЕМАМЕ (), ЗЕС+СКАРН+1АМС

“ Display the prompt

FRESHLINE

PRINT "@XO9Hit key to select door:

LET x = GETX()

LET y = GETY()

WHILE (!exitflag) DO

ANSIPOS x,y ' Position the cursor in the whirly-gig spot

DELAY 2 ' Wait for a couple of clock ticks
PRINT char(off$4) ' Display the current stage of whirly-gig animation
INC off ' Update off for the next stage of whirly-gig

LET key - UPPER(INKEY()) ' Get the users keypress

' If the user pressed a hot key . .

IF ((key >= "A") & (key <= "Z")) THEN
LET exitflag - TRUE

KBDSTUFF name (ASC (key) -ASC("A"))+CR
ELSEIF (key <> "")

LET exitflag = TRUE
KBDSTUFF CR

ENDIF

ENDWHILE

Get ready to exit
Stuff the door name and a CR

Get ready to exit

Stuff CR to abort door prompt

PEEZEZREZZAZREEZZSRERREZERSEREREERERRRSESERSZERSASESESSRASSSRSSERRSERRASSSZRSSERERASERRSXSJ
H

This PPL application is set up to provide a hot key interface for selecting a door. Note that we

must initialize the list of door commands available up above (the STRING array name). Then

if we hit a key (A-Z) that is assigned to a door, that door will be instantly selected. Otherwise.

the PPE will simply exit (automatically hitting enter for the door name prompt to get past it).

The PPL Development Kit 43

Сһаріег 5

44

A PPL Tutorial

The PPL Development Kit

G
PPL Structure

PPL Structure Chapter 6

PPL Structure

Basics

A PPL program is created by a programmer with a standard text editor. Each line consists of

standard ASCII text (up to 2048 characters long) terminated with a carriage return/line feed

pair. Character case is not significant except in literal text strings. Three types of lines are

recognized by the compiler: comment lines, variable declaration statements and code

statements.

Comments

Comments are used by the PPL programmer to make notes in the source code about what the

code is supposed to do and generally clarify things so that code maintenance is easier. They

are completely ignored by the PPL compiler so they may contain any text desired. A comment

may be on a line all by itself or at the end of a line after a valid statement. A blank line is

considered a comment. Any text following a quote character (') or semi-colon (:) is also а

comment. The following are all valid comments:

; This is a comment line
STRING buf, str, ssNum ' This is a comment too

“ The blank line above this (as well as these
' lines) are all comments
CLS ; Yet *ANOTHER* comment!

Variable Declaration Statements

Variable declaration statements must start with a keyword denoting the variable type. Valid

type keywords are BOOLEAN, DATE, INTEGER, MONEY, STRING and TIME. The
keyword must be followed by one or more valid variable names (or array declarations) which

should be separated by commas (,). A valid variable name must start with a letter (A-Z) and

may contain letters, numbers (0-9) and the underscore character (). Any number of

characters may be used but only the first 32 will be recognized by PPL. If the variable is an

array then the name should be followed by an open parenthesis [(], one. two or three constant
subscript expressions (separated by commas), and finally a closing parenthesis [)]. Here are

some examples:

BOOLEAN adultFlag
DATE this, IS, а VARIABLE, to, HOLD todays, DATE

; Only this IS a VARIALBE to HOLD today is significant
INTEGER age

MONEY prices (2,5)
STRING buf, labels(10), ssNum
TIME start, stop

The PPL Development Kit 47

Сһаріег 6 PPL Structure

Code Statements

Code declaration statements must start with a keyword indicating the operation or process to

be performed. There is one exception to this rule, however, and that is the LET statement. If

no keyword is found at the beginning of a line, a LET statement is implied and the rest of the

line should follow the format:

VAR = EXPRESSION

There are many statements defined in PPL and it is beyond the scope of this part of the manual

to cover the precise syntax for each and every one of them. Simply put, a statement takes zero,

one or more expressions (see Expressions later in this section) and/or variable names (see

Variable Declaration Statements) as arguments (separated by commas), does something, using

any passed expressions and/or variables, and assigning new values, as needed, to passed

variables. Here are a few sample statements:

This statement clears the screen and takes no arguments
CLS

' Evaluates the single expression and assigns the result to ans
LET ans = 5+4*3/2-1

; Evaluates all three (could be more, could be less) expressions (two of
; which have only one term) and prints them in order, following them
; with a carriage return
PRINTLN "The answer "«"is ",STRING(ans),"."

; Evaluate the expression on the left, display it, then get a string
; from the user and assign it to the variable name on the left
INPUT "What is "+"your age",current Age

Here are the valid statements accepted in PPL source code:

48

ADJTIME
ANSIPOS
BACKUP

BLT
BROADCAST

BYE
CALL

CDCHKOFF
CDCHKON
CHAT

CLOSECAP
CLREOL

CLS
COLOR

CONFFLAG
CONFUNFLAG
DBGLEVEL

DEC
DEFCOLOR
DELAY
DELETE
DELUSER

DIR
DISPFILE

DISPSTR
DISPTEXT
DOINTR
DTROFF
DTRON

ELSE
ELSEIF

END
ENDIF

ENDWHILE
FAPPEND
FCLOSE
FCREATE
FGET
FOPEN
FOR

FORWARD
FPUT

FPUTLN
FPUTPAD

FRESHLINE
FREWIND
GETTOKEN
GETUSER

GOODBYE

INPUTDATE
INPUTINT

INPUTMONEY
INPUTSTR
INPUTTEXT
INPUTTIME
INPUTYN
JOIN

KBDCHKOFF
KBDCHKON
KBDFILE
KBDSTUFF

LET
LOG

MESSAGE
MORE

MPRINT
MPRINTLN
NEWLINE
NEWLINES
NEWPWD
NEXT

OPENCAP
OPTEXT
PAGEOFF
PAGEON
POKEB
POKEDW
POKEW
POP

PRINT
PRINTLN

PROMPTSTR
PUSH

PUTUSER
QUEST
RDUNET
RDUSYS
RENAME

RESETDISP

RESTSCRN
RETURN

SAVESCRN
SENDMODEM

SHELL
SHOWOFF
SHOWON
SOUND
SPRINT

SPRINTLN
STARTDISP

STOP
TOKENIZE
VARADDR
VAROFF
VARSEG
WAIT

WAITFOR
WHILE
WRUNET
WRUSYS

The PPL Development Kit

PPL Structure

Expressions

Chapter 6

An expression in PPL can take just about any form imaginable. It consists of one or more

constants, variables (see Variable Declaration Statements), functions (which take zero, one or

more arguments), or sub-expressions, all of which are separated by PPL operators. Although

most statements and functions in PPL expect expressions of a specific type as arguments, you

need not pass it an expression of the correct type; PPL will automatically convert from one

type to another when it needs to. Here are a few sample expressions:

' Define a few variables to hold expression results
INTEGER i,
STRING s,

, k
, U

' Single term expressions
' (All expressions here are to the right of the -)

2 LET i -
LET j -
LET k -
LET s - "STRING"

‘ Complex expressions
LET i = i*j*k+2*i+3*j+k/2-5
LET j = i*j*(k«2)*(i*3)* (j*k)/(2-5)
LET k = (RANDOM(5)+1)*5+ABS(j)
LET t - CHR(i$256)
LET u - met

Constants

PPL supports both user defined constants and pre-defined constants. User defined constants

may be any of the following:

SH HH A MONEY constant (dollar sign followed by optional dollars followed by

decimal point followed by cents; # = 0-9)

##h An INTEGER hexadecimal constant (a decimal digit followed by zero.

one or more hexadecimal digits followed by an H; # = 0-9 & A-F)

та An INTEGER decimal constant (опе ог more decimal digits followed by a

D; # = 0-9)

##0 An INTEGER octal constant (one or more octal digits followed by an O:

= 0-7)

##b An INTEGER binary constant (one or more binary digits followed by a B;

= 0-1)

+/-## An INTEGER constant (an optional plus or minus sign followed by one or

more decimal digits; # = 0-9)

"x" A STRING constant (a double quote followed by displayable text followed

by another double quote; X = any displayable text)

@X## An INTEGER @X constant (a commercial at sign followed by an X

The PPL Development Kit

followed by two hexadecimal digits; # = 0-9 & A-F)

49

Chapter 6 PPL Structure

The following predefined constant labels are also available. Their values and uses will be

defined in the PPL Reference section.
AUTO HIGHASCII NOCLEAR
BELL LANG O RD
DEFS LFAFTER о RW

ECHODOTS _ LFBEFORE O_WR
ERASELINE - LOGIT SEC

FALSE — LOGITLEFT STACKED
FCL NC S_DB

FIELDLEN NEWLINE S_DN

Functions

PPL supports many functions which may be used by the programmer in expressions. Here is a

list of valid PPL functions. As with the predefined constants, their return values and uses will

be documented in the PPL Reference section.

HELPPATH MONTH REGDS U_BDL
HOUR NOCHAR REGDX U_BDLDAY
125 NOT REGES U_BUL

INKEY ONLOCAL REGF U_FDL
INSTR OR REGSI U_FUL
KINKEY PAGESTAT REPLACE U. INCONF
LANGEXT PCBDAT RIGHT U, LDATE
LEFT PCBNODE* RTRIM U LDIR
LEN PEEKB S21 U. LOGONS

LOGGEDON PEEKDW SCRTEXT U_LTIME
LOWER PEEKW SEC U_MSGRD
LTRIM PPENAME SHOWSTAT U_MSGWR

CURCOLOR MASK_ALNUM PPEPATH SLPATH U_NAME
CURCONF MASK_ALPHA PSA SPACE U_PWDHIST
CURSEC МА5К А5СІІ RANDOM STRING U_PWDLC
DATE MASK_FILE READLINE STRIP U_PWDTC
DAY MASK_NUM REGAH STRIPATX U_RECNUM

DBGLEVEL MASK_PATH REGAL SYSOPSEC U. STAT
DEFCOLOR MASK PWD REGAX TEMPPATH U. TIMEON

DOW MAXNODE REGBH TIME VALCC
EXIST MGETBYTE REGBL TIMEAP VALDATE
FERR MID REGBX TOKCOUNT VALTIME

FILEINF MIN REGCF TOKENSTR VER
FMTCC MINKEY REGCH TRIM XOR
GETENV MINLEFT REGCL UPPER YEAR

GETTOKEN MINON REGCX UN, CITY YESCHAR
GETX MKADDR REGDH UN, NAME
GETY MKDATE REGDI ОМ OPER

GRAFMODE MODEM REGDL UN STAT

Sub-Expressions

А sub-expression is simply any valid PPL expression surrounded by parentheses. For
example, this is an expression:

7%6-5%4/3%2

То make it into а sub-expression, surround it with parentheses like this:

(7%6-5%4/3%2)

50 Тһе PPL Development Kit

PPL Structure Chapter 6

This sub-expression could be used in yet another expression:

PRINTLN 2* (7+6-5*4/3%2) *RANDOM (4)

Operators

PPL supports a full set of operators in addition to the functions listed previously. They are:

Operator

(

<>

The PPL Development Kit

Function

Starts a sub-expression; requires a) to terminate

Example: 3*(2+1) (result is 9, not 7)

Ends a sub-expression

Example: 3*(2«1) (result is 9, not 7)

Returns the result of raising a number to a specified power

Expects and returns type INTEGER

Example: 342 (result is 9)

Returns the product of two numbers

Expects and returns type INTEGER

Example: 3%2 (result is 6)

Returns the quotient of two numbers

Expects and returns type INTEGER

Example: 9/4 (result 15 2)

Returns the remainder of two numbers

Expects and returns type INTEGER

Example: 9%4 (result is 1)

Returns the sum of two numbers or a string concatenated to another

Expects and returns type INTEGER or STRING

Example: 1»2 (result is 3)

Example: "string plus "*"String" (result is "String plus String")

Returns the difference between two numbers

Expects and returns type INTEGER

Example: 3-2 (result is 1)

Returns TRUE if two values are equal

Expects any type; returns type BOOLEAN

Example: 3 = 3 (result is TRUE)

Example: "string" = "sTRING" (result is FALSE)

Returns TRUE if two values are not equal

Expects any type: returns type BOOLEAN

Example: 3 <> 3 (result is FALSE)

Example: "string" <> "STRING" (result is TRUE)

Chapter 6 PPL Structure

< Returns TRUE if a value is less than another

Expects any type; returns type BOOLEAN

Example: 2 < 3 (result is TRUE)

Example: "STRING" < "sTRING" (result is FALSE)

<= Returns TRUE if a value is less than or equal to another

Expects any type; returns type BOOLEAN

Example: 2 <= 3 (result is TRUE)

Example: “stRING" <= "STRING" (result is TRUE)

> Returns TRUE if a value is greater than another

Expects any type; returns type BOOLEAN

Example: 2 > 3 (result is FALSE)

Example: "STRING" > “STRING” (result is FALSE)

>= Returns TRUE if a value is greater than or equal to another

Expects any type; returns type BOOLEAN

Example: 2 >= 3 (result is FALSE)

Example: "STRING" >= "STRING" (result is TRUE)

! Returns the logical not of a BOOLEAN value

Expects and returns type BOOLEAN

Example: :true (result is FALSE)

& Returns the logical and of two BOOLEAN values

Expects and returns type BOOLEAN

Example: TRUE в FALSE (result is FALSE)

| Returns the logical or of two BOOLEAN values

Expects and returns type BOOLEAN

Example: TRUE | FALSE (result is TRUE)

PPL operators have a precedence between one and six that determines which operators get

processed first. А precedence of one gets processed first, six gets processed last.

Precedence | Operators

l C)

2 А

3 * / %

4 + -

5 = <> < <= > >=

6 ! & |

Binary operators expect both the left and right operands to be of the same type. If they are not
then appropriate type conversions will be performed automatically.

52 The PPL Development Kit

7
PPL Reference

PPL Reference

PPL Reference

Chapter 7

Lists by Type

PPL is composed of basically five different token types.

statements, types, and variables.

Constant List
AUTO
BELL
DEFS

ECHODOTS
ERASELINE

FALSE
FCL

FIELDLEN

Function List

The PPL Development Kit

CURCOLOR
CURCONF
CURSEC
DATE
DAY

DBGLEVEL
DEFCOLOR

DOW
EXIST
FERR

FILEINF
FMTCC
GETENV

GETTOKEN
GETX
GETY

GRAFMODE

HELPPATH
HOUR
I2S

INKEY
INSTR
KINKEY
LANGEXT
LEFT
LEN

LOGGEDON
LOWER
LTRIM

MASK ALNUM
MASK ALPHA
MASK ASCII
MASK FILE
MASK NUM
MASK PATH
MASK PWD
MAXNODE
MGETBYTE

MID
MIN

MINKEY
MINLEFT
MINON
MKADDR
MKDATE
MODEM

HIGHASCII
LANG

LFAFTER
LFBEFORE
LOGIT

LOGITLEFT
NC

NEWLINE

MONTH
NOCHAR
NOT

ONLOCAL
OR

PAGESTAT
PCBDAT
PCBNODE
PEEKB
PEEKDW
PEEKW

PPENAME
PPEPATH

PSA
RANDOM

READLINE
REGAH
REGAL
REGAX
REGBH
REGBL
REGBX
REGCF
REGCH
REGCL
REGCX
REGDH
REGDI
REGDL

They are constants. functions.

NOCLEAR
O RD
о RW
O WR
SEC

STACKED
S DB
S DN

REGDS
REGDX
REGES
REGF
REGSI

REPLACE
RIGHT
RTRIM
S2I

SCRTEXT
SEC

SHOWSTAT
SLPATH
SPACE
STRING
STRIP

STRIPATX
SYSOPSEC
TEMPPATH

TIME
TIMEAP

TOKCOUNT
TOKENSTR

TRIM
UPPER

UN CITY
UN, NAME
UN, OPER
UN, STAT

0 BDL
U, BDLDAY

9 BUL
U FDL
U FUL

U, INCONF
0 LDATE
0 ІСІК

0 ГОСОМ5
U_LTIME
U_MSGRD
U, MSGUR
9 NAME

U PWDHIST
U_PWDLC
U_PWDTC
U RzCNUM
U STAT

U TIMEON
VALCC

VALDATE
VALTIME

VER
XOR
YEAR

YESCHAR

55

Chapter 7 PPL Reference

Statement List
ADJTIME
ANSIPOS
BACKUP

BLT
BROADCAST

CDCHKOFF
CDCHKON
CHAT

CLOSECAP
CLREOL
CLS

COLOR
CONFFLAG

CONFUNFLAG
DBGLEVEL

DEC
DEFCOLOR
DELAY
DELETE
DELUSER

DIR
DISPFILE

Type List

DISPSTR
DISPTEXT
DOINTR
DTROFF
DTRON
ELSE

ELSEIF
END

ENDIF
ENDWHILE
FAPPEND
FCLOSE
FCREATE
FGET
FOPEN
FOR

FORWARD
FPUT

FPUTLN
FPUTPAD

FRESHLINE
FREWIND
GETTOKEN
GETUSER

GOODBYE

INPUTDATE
INPUTINT

INPUTMONEY
INPUTSTR
INPUTTEXT
INPUTTIME
INPUTYN
JOIN

KBDCHKOFF
KBDCHKON
KBDFILE
KBDSTUFF

LET
LOG

MESSAGE
MORE

MPRINT
MPRINTLN
NEWLINE
NEWLINES
NEWPWD
NEXT

OPENCAP
OPTEXT
PAGEOFF
PAGEON
POKEB
POKEDW
POKEW
POP

PRINT
PRINTLN

PROMPTSTR
PUSH

PUTUSER
QUEST
RDUNET
RDUSYS
RENAME

RESETDISP

RESTSCRN
RETURN

SAVESCRN
SENDMODEM

SHELL
SHOWOFF
SHOWON
SOUND
SPRINT

SPRINTLN
STARTDISP

STOP
TOKENIZE
VARADDR
VAROFF
VARSEG
WAIT

WAITFOR
WHILE
WRUNET
WRUSYS

BOOLEAN INTEGER STRING
DATE MONEY TIME

Variable List
U_LONGHDR
U_SCROLL
U_LEXPDATE
U_PWDEXP
U. EXPSEC

9 PAGELEN
0 SEC

0 ADDR (5)
9 ALIAS

0 BDPHONE

U, CITY
U_CMNT1
U_CMNT2

U_HVPHONE

U_NOTES (4)

56 The PPL Development Kit

PPL Reference Chapter 7

ABORT() Function

Function

Returns a flag indicating whether or not the user has aborted the display of information.

Syntax

ABORT ()

No arguments are required

Return Type & Value

BOOLEAN If the user has aborted the display of information by answering no to a

MORE? prompt or by hitting ^K or ^X display, this function returns

TRUE. Otherwise FALSE is returned.

Remarks

Unless specifically disabled, the user can abort any display at any time by hitting ^K or ^X or

by answering no to a MORE? prompt. If the user does this, PCBoard will not display any

further information until the display is reset via the RESETDISP statement. This function

should be checked occasionally during long displays of information to determine if the user

wants to abort. If the function returns TRUE, you should stop printing information and

continue with the next part of the program after using RESETDISP.

Examples

INTEGER I

STARTDISP FCL

' While the user has not aborted, continue

WHILE (!ABORT()) DO

PRINTLN “I is equal to ",I
INC I

ENDWHILE

RESETDISP

See Also

RESETDISP Statement, STARTDISP Statement

The PPL Development Kit 57

Chapter 7

ABS() Function

Function

Returns the absolute value of an integer expression.

Syntax

ABS (іехр)

iexp Any integer expression.

Return Type & Value

PPL Reference

INTEGER If iexp is greater than or equal to O, this function returns iexp. Otherwise

this function returns -iexp.

Remarks

The most significant use of the absolute value function is to determine the difference between
two values. For example, you may need to know in a program the difference between 8 and

13. Normal subtraction would yield a result of -5 (8-13). You don't need the mathematical

difference though, you need the logical difference between the two integers. The absolute

value function will return that. In other words, while 8-13 is -5, ABS(8-13) is 5, which may

be a more desirable result in many cases. Also, it is easier to code and understand than this:

INTEGER D
LET D - 8-13
IF (D < 0) LET D = -D

Examples

INTEGER num

' Loop while num is « 6 or num » 10
. ABS(4-8)-4 ABS(5-8)-3 АВ5(6-8)-2 ABS(7-8)-1

' ABS(9-8)=1 АВ5(10-8)-2 ABS(11-8)=3 АВ5(12-8)-4 ...
WHILE (ABS(num-8) > 2) DO

PRINTLN "Enter a number from 6 to 10:"
INPUT "Number", num

ENDWHILE

INTEGER i, г
' Generate 10 random numbers from -5 to 5
' Print each number and it's absolute value
FOR i = 1 TO 10

LET r = RANDOM(10)-5

PRINTLN "The absolute value of "r,"
NEXT

See Also

RANDOM) Function

58 The PPL Development Kit

PPL Reference Chapter 7

ADJTIME Statement

Function

Adjust the users time up or down.

Syntax

ADJTIME minutes

minutes An integer expression containing the number of minutes that the users

time left should be adjusted by. A value greater than 0 will add time: a

value less than 0 will deduct time.

Remarks

Use this statement to reward (or penalize) the user with more (or less) time based on any

condition or event you wish. However, the added/deducted time is only applied to the current
call. It will not be remembered after the caller hangs up, except that it will be reflected in the

time online today. For example, if a caller has a normal daily limit of 30 minutes and you add

15 minutes, they can stay online for up to 45 minutes. If they only stay online for 15 minutes

and hangup, they will only have 15 minutes left at the beginning of the next call, not 30: the

added time isn't saved. If they stay online for 40 minutes though, it will have given them their
entire normal allotment of time plus 10 of the 15 extra minutes. If they try to call back to use

their last 5 minutes they will not be able to because PCBoard will see that they've used their

entire daily time limit plus 10 minutes. The last 5 minutes wasn't saved. Note that time may

only be added if the users time has not been adjusted for an event. Time may always be

subtracted.

Examples

STRING yn
INPUTYN "Do you wish to gamble 5 minutes for 10",yn,@X0E
IF (yn = YESCHAR()) THEN

IF (RANDOM(1) = 1) THEN

PRINTLN "You *WON*! 10 extra minutes awarded .

PRINTLN "You lost. Sorry, but I have to take 5 minutes now .

ADJTIME -5

ENDIF

ELSE

PRINTLN "Chicken! 7)"

ENDIF

See Also

MINLEFTO Function, MINON(Function, U ТІМЕОМО Function

The PPL Development Kit 59

Chapter 7

60

PPL Reference

AND() Function

Function

Calculate the bitwise AND of two integer arguments.

Syntax

AND(iexpl,iexp2)

iexpl Any integer expression.

iexp2 Any integer expression.

Return Type & Value

INTEGER Returns the bitwise AND of iexp1 and iexp2.

Remarks

This function may be used to clear selected bits in an integer expression by ANDing the

expression with a mask that has the bits to clear set to 0 and the bits to ignore set to 1.
Another use is to calculate the remainder of a division operation by a power of two by ANDing

the dividend with the power of two minus one.

Examples

' Clear the high word, keeping only the low word

PRINTLN "07FFFFFFFh AND OFFFFh = ",AND(07FFFFFFFh, OFFFFh)

' In this case 123$16 = AND(123,15) (15 = 1111b)
PRINTLN "The remainder of 123 divided by 16 is ",AND(123,1111b)

See Also

МОТО Function, OR() Function, XOR() Function

The PPL Development Kit

PPL. Reference Chapter 7

ANSION() Function

Function

Report the status of ANSI availability with the current caller.

Syntax

ANSION ()

No arguments are required

Return Type and Value

BOOLEAN If the caller can support ANSI then TRUE is returned, otherwise FALSE

is returned.

Remarks

This function will return TRUE if the caller has ANSI capabilities. This could have been

determined one of two ways. If the user answered yes to the Do you want graphics?

prompt this function will return TRUE. If the user answered no, there is still a chance that

the user has ANSI capabilities; PCBoard will interrogate the remote computer to find out if

ANSI is available. If it is, this function will return TRUE. Finally, if the user answered no

and PCBoard was unable to detect ANSI at login this function will return FALSE. There is

still a chance that the user could support ANSI but the only safe approach at this point is to

assume that there is no ANSI available.

Examples

IF (ANSION()) PRINTLN "You have ANSI support available!"

See Also

ANSIPOS Statement, BACKUP Statement, FORWARD Statement, GETX() runction,

GETYO Function, GRAFMODE(O Function

The PPL Development Kit 61

Chapter 7 PPL Reference

ANSIPOS Statement

Function

Position the cursor anywhere on the screen using an ANSI positioning escape sequence.

Syntax

ANSIPOS xpos, ypos

xpos An integer expression with the screen column (x position) in which to

place the cursor. Valid columns are 1 through 80.

ypos An integer expression with the screen row (y position) on which to place

the cursor. Valid rows are 1 through 23.

Remarks

This statement will position the cursor to the specified (X,Y) coordinate on the screen but only

if the current caller has ANSI support. If you are writing a program that will require ANSI

positioning, check the value of the ANSION() function. If ANSI 15 not available, this

statement will be ignored.

Examples

CLS

IF (ANSION()) THEN

ANSIPOS 1,1

PRINTLN "This starts at (1,1)"

ANSIPOS 3,3

PRINTLN "This starts at (3,3)"

ANSIPOS 2,2

PRINTLN "And *THIS* starts at (2,2)"
ENDIF

See Also

ANSION(Function, BACKUP Statement, FORWARD Statement, GETX() Function,

GETYO Function, GRAFMODE) Function

62 The PPL Development Kit

PPL Reference Chapter 7

ASC() Function

Function

Converts a character to it's ASCII code.

Syntax

ASC (sexp)

sexp Any string expression.

Return Type & Value

INTEGER Returns the ASCII code of the first character of sexp (1-255) or 0 if sexp is

an empty string.

Remarks

In other languages (such as BASIC) you can have any of the 256 possible ASCII codes (0-255)

in a string. In PPL you are limited to 255 codes (1-255) because ASCII 0 is used to terminate

strings and can't appear іп the middle of a string. So, if you ever get a 0 returned from this

function, it is because you passed it an empty string.

Examples

PRINTLN "The ASCII code for S is ",ASC("S")

' Convert a lowercase s to uppercase

STRING s

LET s = CHR(ASC("s") -ASC("a") +ASC("A"))

See Also

CHRO Function

The PPL Development Kit 63

Chapter 7

64

PPL Reference

AUTO Constant

Function

Set the auto answer flag in an INPUTSTR or PROMPTSTR statement.

Value

8192 - 10000000000000b - 200000 - 2000h

Remarks

The INPUTSTR and PROMPTSTR statements have the ability to automatically answer
themselves if left alone for 20 seconds. It can be especially useful if you are writing a program

that should work with automated systems; use the AUTO constant and the question will

automatically be answered after 20 seconds just in case the automation system doesn't know

what to do with it.

Examples

STRING ans

LET ans = МОСНАР()
INPUTSTR "Run program now",ans,@X0E,1,“",AUTO+YESNO
IF (ans - NOCHAR()) END

See Also

INPUTSTR Statement, PROMPTSTR Statement

The PPL Development Kü

PPL Reference Chapter 7

B2W() Function

Function

Convert two byte-sized arguments into a single word-sized argument.

Syntax

B2W(iexp1,iexp2)

іехрі Any integer expression with a value between 000h and OFFh.

iexp2 Any integer expression with a value between 000h and OFFh.

Return Type & Value

INTEGER Returns a word-sized value between 00000h and OFFFFh. Тһе return

value is computed by the following expression: iexpi-iexp2*0100h.

Remarks

It is sometimes necessary to combine two bytes together to form a word. This function

simplifies that process, and speeds it up a little as well by doing it internally instead of

requiring you to perform the arithmetic yourself. It can be especially useful when used with

the DOINTR statement.

Examples

' This line will display 25 *'s at the current screen position
' NOTES: 10h is the Video BIOS interrupt
' B2W(ASC("*"),09h) is the char to print and the service number

0007h is video page 0, attribute 7
25 is the number of characters to print
All others are 0 and not needed for this function

DOINTR 10h,B2W(09h,ASC(^"*")),0007h,25,0,0,0,0,0,0

See Also

DOINTR Statement

The PPL Development Kit 65

Chapter 7 PPL Reference

BACKUP Statement

Function

Move the cursor backward a specified number of columns.

Syntax

BACKUP numcols

numcols An integer expression of the number of columns to move backward. Valid
values are 1 through 79.

Remarks

This statement will move the cursor backward, nondestructively, a specified number of

columns. It will work with or without ANSI. If ANSI is available (as reported by the

ANSIONO function) then it will use an ANSI positioning command; otherwise it will use the

specified number of backspace characters. ANSI is usually faster, but backspace characters

will get the job done. Note that you cannot use this function to move beyond column 1; to do

so would require ANSI. So, if the cursor is already in column 1 this statement will һауе no

effect. And if the cursor is in column 80 the maximum you could move backward would be 79

(column 80 - 79 columns = column 1).

Examples

PRINT "Rolling dice -- "
FOR i = 1 TO 10

LET dl = RANDOM(5) +1
LET d2 = RANDOM(5)+1
PRINT 41,"-",42

NEWLINE

See Also

ANSION() Function, ANSIPOS Statement, FORWARD Statement, GETX() Function,

СЕТҮ(Function, GRAFMODEO Function

66 The PPL Development Kit

PPL Reference Chapter 7

BELL Constant

Function

Set the bell flag іп а DISPTEXT statement.

Value

2048 = 100000000000b = 40000 = 800h

Remarks

The DISPTEXT statement has the ability to sound a bell before displaying the actual text of a

prompt. This is useful when you want to get the users attention when displaying information.

It sends a “G (ASCII 7) character to the remote caller and sounds the alarm on the local

computer running PCBoard (unless the alarm has been toggled off). It is the responsibility of

the users terminal software to support the ^G.

Examples

' Get the users attention and display the closed board prompt

DISPTEXT 11, BELL+LFAFTER+LFBEFORE

See Also

DISPTEXT Statement

The PPL Development Kit 67

Chapter 7

68

PPL Reference

BLT Statement

Function

Display a specified bulletin number to the user.

Syntax

BLT bltnum

bltnum The number of the bulletin to display to the user. Valid values are 1

through the number of bulletins available.

Remarks

This statement will display a specified bulletin number to the user. The BLT.LST file for the

current conference will be searched for the bulletin. If the bulletin number is invalid (less than

І or greater than the highest bulletin number defined) then nothing will be displayed.

ж Examples

INTEGER num

INPUT “Bulletin to view",num

BLT num

See Also

DIR Statement, JOIN Statement, QUEST Statement

The PPL Development Kit

PPL Reference Chapter 7

BOOLEAN Type

Function

Declare one or more variables of type boolean.

Syntax

BOOLEAN var|/arr(s[,s[,s])])[,varjarr(s[,s[,s]]J)]
BOOLEAN varj|arr(s[,sí(,s]))[,varjarr(st,sií.s1])]!

var The name of a variable to declare. Must start with a letter [A-Z] which

may be followed by letters. digits [0-9] or the underscore | |. Мау be of

any length but only the first 32 characters are used.

arr The name of an array variable to declare. The same naming conventions

as var are used.

S The size (0-based) of an array variable dimension. Any constant integer

expression is allowed.

Remarks

BOOLEAN variables can hold two values: 1 or 0 (TRUE or FALSE). It is stored internally

as a one byte unsigned character. If a BOOLEAN is assigned to or from an INTEGER type

then the value | or 0 is assigned. If a BOOLEAN is assigned to a STRING type then it is

automatically converted to a string (either "1" or "0"). If a STRING is assigned to a

BOOLEAN then the value of the string will be used: a 0 value will be taken as is. another

other value will be converted to 1. All other types, when assigned to or from a BOOLEAN.

will be converted to an INTEGER first before being assigned to or from the BOOLEAN type.

Examples

BOOLEAN flag, bit, isPrime(100), leapYears(2079-1900)

See Also

DATE Type, INTEGER Type, MONEY Type, STRING Type, TIME Type

The PPL Development Kit 69

Chapter 7 PPL Reference

BROADCAST Statement

Function

Broadcast a single line message to a range of nodes.

Syntax

BROADCAST lonode,hinode, message

lonode An integer expression containing the low node number to which the

message should be broadcast.

hinode An integer expression containing the high node number to which the

message should be broadcast.

message A string expression containing the message text which should be broadcast

to the specified nodes.

Remarks

This PPL statement functions the same as the PCBoard BROADCAST command, which is

normally reserved for SysOp security level. This statement allows you to programatically

broadcast a message to a range of nodes without giving users the ability to manually broadcast
at any time they choose.

Examples

' Broadcast a message to a specific node

BROADCAST 5,5,"This broadcast from "«STRING(PCBNODE())
' Broadcast to a range of nodes

BROADCAST 4,8,"Stand-by for log off in 10 seconds"
‘ Broadcast to all nodes

BROADCAST 1,65535,"Hello all!”

See Also

RDUNET Statement, UN ...() Functions, WRUNET Statement

70 The PPL Development Kit

PPL Reference Chapter 7

BYE Statement

Function

Log the user off as though they had typed the BYE command.

Syntax

BYE

No arguments are required

Remarks

There are multiple ways for the user to log off. One is by typing G at the command prompt.

That will warn them if they have files flagged for download and (optionally) confirm their

selection (incase they accidentally hit G and ENTER). Another is the BYE command.
PCBoard assumes that, if the user typed BYE instead of G, that they really want to log off.

didn't type it in accidentally, and want to leave now. The BYE statement does just that. It is

intended to provide you PPL with the same functionality as many PCBoard prompts where G

or BYE can be entered at any point.

Examples

STRING s

INPUT "What do you want to до", ѕ
IF (s = "G") THEN GOODBYE

ELSEIF (s - "BYE") THEN BYE

ELSE KBDSTUFF s

ENDIF

See Also

DTROFF Statement, DTRON Statement, GOODBYE Statement, HANGUP Statement

The PPL Development Kit 71

Chapter 7 PPL Reference

CALL Statement

Function

Call (execute) another PPE file from the currently executing PPE.

Syntax

CALL filename

filename А string expression containing the complete path and filename of a PPE

file to load and execute.

Remarks

It is sometimes convienient to load and run complete programs from other programs, similar

to how you process subroutines with GOSUB and RETURN. PPL supports running both

external EXE and COM files via the SHELL statement and other PPE files via the CALL

statement. CALL allows you to load and run another PPE file, after which control returns to

the first PPE at the statement after the CALL. The second PPE is completely separate from
the first. You may pass values to the PPE by tokenizing a string with the TOKENIZE
statement. If you need to pass values back to the first PPE, you will need to create some sort of

parameter passing convention yourself. For example, you may have the second PPE create a

file that has the needed information for the first PPE.

Examples

STRING s

INPUT "What PPE file do you wish to run",s

CALL "C:\PCB\PPE\"+s+".PPE"

See Also

SHELL Statement, TOKENIZE Statement

72 The PPL Development Kit

PPL Reference Chapter 7

CALLID() Function

Function

Access caller ID information returned from caller ID compatible modems.

Syntax

CALLID ()

No arguments are required

Return Type & Value

STRING Returns a string with caller ID information captured from a caller ID
compatible modem.

Remarks

Some areas of the country have an optional service available which will send, to your modem

(other other telephone device), the phone number and/or name of the person calling you. This

service is known as "СаПег ID'. Some modems are starting to support it directly by capturing

the information and sending it to you between the first and second rings. It can be very helpful

in determining who is calling (or abusing) your BBS or for statistical purposes. This function

will return the information if your modem supports it.

Examples

FAPPEND 1,"CID.LOG",O WR,S DW
FPUTLN 1,LEFT(U NAME(),30)*CALLID()
FCLOSE 1

See Also

CARRIERO Function, MODEMO Function

The PPL Development Kit 73

Chapter 7

74

PPL Reference

CALLNUM() Function

Function

Returns the current caller number.

Syntax

САМОМ ()

No arguments are required

Return Type & Value

INTEGER Returns the caller number of the user online.

Remarks

Everytime a user logs on to the system the system caller number is incremented. This function

will return the caller number for use in your PPL applications. It is kept in the main

conference MSGS file. Note that the number is not incremented until after the user has

completely logged on to the system so you should generally wait until LOGGEDON(reports

TRUE before using this function.

Examples

IF (LOGGEDON() & (CALLNUM() = 1000000)) THEN

PRINTLN "@BEEP@CONGRATULATIONS!!!"

РКІМТІМ "“@BEEP@YOU ARE THE 1,000,000th CALLER!!!"

PRINTLN "Upgrading security . . ."
GETUSER

LET U SEC - 99

PUTUSER

ENDIF

See Also

LOGGEDON(O Function, ONLOCALO Function, О LOGONSQ Function

The PPL Development Kit

PPL Reference Chapter 7

CARRIER() Function

Function

Determine what speed the current caller is connected at.

Syntax

CARRIER ()

No arguments are required

Return Type & Value

INTEGER Returns an integer with the connect speed of the current caller.

Remarks

Should the need arise for you to know what speed the caller is connected to the BBS at. this

function will return that information. You should note that this information is not guaranteed

accurate. It is the responsibility of the modem to tell PCBoard the actual connect spced.

especially in locked port environments. For example, if your serial port is locked at 38400

bps, the modem can usually be configured to report either the actual connect speed (9600 bps.

for example) or the locked port rate (38400 bps). PCBoard has to trust the modem: if the

modem tells it 38400, it will have to live with that, as will your PPL applications.

Examples

IF (CARRIER() < 9600) THEN
PRINTLN "Sorry, downloads are not permitted at speeds below 9600 bps"
END

ENDIF

See Also

CALLIDO Function, MODEMO Function

The PPL Development Kit E

Chapter 7 PPL Reference

CCTYPE() Function

Function

Determine what the type of a credit card is based on the credit card number.

Syntax

CCTYPE (ccnum)

ccnum A string expression with the credit card number that 15 to be checked.

Return Type & Value

STRING Returns a string with the name of the card.

Remarks

PPL can be used to perform some simple credit card validation. This function returns the

issucr of a credit card based on the credit card number. For example, a valid credit card

number that starts with a "4" is a Visa card, so the string "VISA" will be returned. If a credit

card is invalid (VALCC() = FALSE) or not recognized, then "UNKNOWN" will be returned.

Other valid credit card with known types will return the appropriate string. The following

card types are recognized by PPL: "DISCOVER", "CARTE BLANCHE", "DINERS CLUB".
"OPTIMA", "AMERICAN EXPRESS", "VISA", and "MASTERCARD".

Examples

STRING s

INPUT "Credit card number",s

IF (VALCC(s)) PRINTLN LEFT(CCTYPE(8),20)," - ",FMTCC(s)

See Also

FMTCC) Function, VALCC() Function

76 The PPL Development Kit

PPL Reference Chapter 7

CDCHKOFF Statement

Function

Turn off carrier detect checking.

Syntax

CDCHKOFF

No arguments are required

Remarks

PCBoard has built in automatic carrier detecting. What this means is that if somconc should

hangup unexpectedly, PCBoard will detect it, log it to the callers log. and recycle back to thc

call waiting screen. Some applications require the ability to turn this off. for examplc. a

callback verification PPE needs to hangup on the caller and then do more processing.

Normally, PCBoard would just recycle at that point. So, just before you start a section of code

that should continue regardless of the existence of a caller online. you should issuc a

CDCHKOFF statement. It will turn off the automatic carrier checking. When you've

finished the block where carrier checking has been disabled, issue the CDCHKON statement

to turn it back on.

Examples

CDCHKOFF

DTROFF

DELAY 18

DTRON

SENDMODEM "ATDT1800DATAFON" ' Please don't call this number! :)

WAITFOR "CONNECT",60

CDCHKON

See Also

The PPL Development Kit

CDCHKON Statement, CDON(Q Function, KBDCHKOFF Statement, KBDCHKON

Statement

„=

Сһаріег 7 PPL Reference

CDCHKON Statement

Function

Tum on carrier detect checking.

Syntax

CDCHKON

No arguments are required

Remarks

PCBoard has built in automatic carrier detecting. What this means is that if someone should

hangup unexpectedly, PCBoard will detect it, log it to the callers log, and recycle back to the

call waiting screen. Some applications require the ability to turn this off; for example, a
callback verification PPE needs to hangup on the caller and then do more processing.

Normally, PCBoard would just recycle at that point. So, just before you start a section of code

that should continue regardless of the existence of a caller online, you should issue a

CDCHKOFF statement. It will turn off the automatic carrier checking. When you've

finished the block where carrier checking has been disabled, issue the CDCHKON statement

to turn it back on.

Examples

CDCHKOFF
DTROFF
DELAY 18
DTRON

SENDMODEM "ATDT1800DATAFON"«CHR(13) ' Please don't call this number! :)
WAITFOR "CONNECT",60

CDCHKON

See Also

CDCHKOFF Statement, CDON() Function, KBDCHKOFF Statement, KBDCHKON

Statement

78 The PPL Development Kit

PPL Reference Chapter 7

CDON() Function

Function

Determine if carrier detect is on or not.

Syntax

CDON ()

No arguments are required

Return Type & Value

BOOLEAN Returns a boolean TRUE if carrier detect is on, FALSE otherwise.

Remarks

If you have used СОСНКОЕЕ to turn off automatic carrier detect checking PCBoard will not
automatically detect and act on a carrier loss. If necessary, this function can be used to detect

a carrier loss condition and act appropriately.

Examples

IF (!CDON()) THEN
LOG "Carrier lost іп PPE "«PPENAME(),FALSE

HANGUP
ENDIF

See Also

CDCHKOFF Statement, CDCHKON Statement

The PPL Development Kit 79

Chapter 7 PPL Reference

CHAT Statement

Function

Enter SysOp chat mode.

Syntax

CHAT

No arguments are required

Remarks

One of the features of PCBoard where change is often requested is the operator page facility.

Some people want to be able to configure multiple ranges of availability per day, some want a

different sounding page bell, longer or shorter page attempts, etc, etc. This statement, along

with the PAGEON and PAGEOFF statements and the PAGESTATO function, allow you to

implement an operator page in any way desired. Of course, the SysOp may still start a chat
with the F10 key or by responding to the default O (operator page) command, and the CHAT

statement may be used at anytime (although you'll generally want to avoid starting it unless

you've confirmed that the SysOp is available since the user has no way to exit it himself).

Examples

PAGEON

FOR i = 1 TO 10

PRINT "@BEEP@"

DELAY 18

IF (KINKEY() = " ") THEN

CHAT

GOTO exit

ENDIF

NEXT

:exit

See Also

PAGEOFF Statement, PAGEOFF Statement, РАСЕЅТАТО Function

80 The PPL Development Kit

PPL Reference Chapter 7

CHR() Function

Function

Converts an ASCII code to a character.

Syntax

CHR (iexp)

iexp Any integer expression between 0 and 255.

Return Type & Value

STRING Returns a one character long string for ASCII codes from 1 to 255 or an

empty string for ASCII code 0.

Remarks

In other languages (such as BASIC) you can have any of the 256 possible ASCII codes (0-255)

іп a string. In PPL you are limited to 255 codes (1-255) because ASCII 0 is used to terminate

strings and can't appear in the middle of a string. So, if you ever get an empty string from this

function, it is because you passed it a 0. Any other value will return a valid string with a

single character.

Examples

PRINTLN "The ASCII code for S is ",ASC("S")

' Convert a lowercase s to uppercase

STRING s

LET s = CHR(ASC("8")-ASC("a") *ASC("A"))

See Also

ASCO Function

The PPL Development Kit 81

Chapter 7 PPL Reference

82

CLOSECAP Statement

Function

Close the screen capture file.

Syntax

CLOSECAP

No arguments are required

Remarks

PCBoard has the ability to capture screen output to a file for later reference. PPL allows that

same ability via the OPENCAP and CLOSECAP statements. This could be useful in a
program that executes a series of commands in non-stop mode. The process could open a

capture file first, execute the commands, close the capture file, then allow the user to view or

download the capture file. CLOSECAP closes the capture file and turns off screen capturing.

Also, the SHOWON and SHOWOFF statements can be used to turn on and off showing

information to the screen while allowing that same information (even if not displayed or

transmitted via modem) to be captured to a file. The SHOWSTATO function can be used to

check the current status of the SHOWON and SHOWOFF statements.

Examples

BOOLEAN ss

LET ss = SHOWSTAT()
SHOWOFF

OPENCAP "CAP"«STRING(PCBNODE()),ocFlag

IF (ocFlag) THEN
DIR "U;NS"
CLOSECAP

KBDSTUFF "FLAG CAP"«STRING(PCBNODE())-*CHR(13)
ENDIF

IF (ss) THEN

SHOWON

ELSE

SHOWOFF

ENDIF

See Also

OPENCAP Statement, SHOWOFF Statement, SHOWON Statement, SHOWSTATO

Function

The PPL Development Kit

PPL Reference Chapter 7

CLREOL Statement

Function

Clear the current line from the cursor to the end of the line using the current color.

Syntax

CLREOL

No arguments are required

Remarks

This statement will work one of two ways depending on the mode the caller is in. If the caller

is in graphics mode (or non-graphics ANSI-positioning) then PCBoard will issue the ANSI

sequence to clear to the end of the line using the current color. ANSI emulators, when written

properly, will echo the color all the way to column 80 of the current line when they receive this

ANSI sequence. If the user is in non-graphics non-ANSI mode, PCBoard will write sufficient

spaces to the display to move to column 80 and then backspace to the original position. Note

that this will not clear the 80th column; the reason for this is to always keep the cursor on the

current line. If the cursor wrote a space to column 80 and moved to the beginning of the next

line it wouldn't be able to move back up to the previous line without ANSI (which we already

know we don't have). This should be adequate for most applications.

Examples

COLOR @X47

CLS

PRINT "This is some sample text. (This will disappear.)"
WHILE (INKEY() - "") DELAY 1

BACKUP 22

COLOR @X1F

CLREOL
PRINT "This goes to the end of the line."

See Also

CLS Statement

The PPL Development Kit 83

Chapter 7 PPL Reference

84

CLS Statement

Function

Clear the screen using the current color.

Syntax

CLS

No arguments are required

Remarks

This statement will work one of two ways depending on the mode the caller is in. If the caller

is in graphics mode (or non-graphics ANSI-positioning) then PCBoard will issue the ANSI
sequence to clear to the screen using the current color. If the user is in non-graphics

non-ANSI mode, PCBoard will write send an ASCII 12 (form feed) character to the remote

terminal in a last ditch effort to clear the remote callers screen. Many terminal programs do
support this, but not all, so be aware that callers may see the ASCII 12 instead of a clear
screen.

Examples

COLOR @X47

CLS

PRINT "This is some sample text. (This will disappear.)"
WHILE (INKEY() - "") DELAY 1

BACKUP 22

COLOR @X1F

CLREOL

PRINT "This goes to the end of the line."

See Also

CLREOL Statement

The PPI. Develonment Kit

PPL Reference Chapter 7

COLOR Statement

Function

Change the current active color.

Syntax

COLOR newcolor

newcolor An integer expression containing the new color to be used by PCBoard and

the remote terminal software.

Remarks

This statement will change the color in use by PCBoard and send the appropriate ANSI

sequence to change color to the remote terminal software. Note that this statement will only

affect a color change if the user is in graphics mode. If the user is in non-graphics mode this

statement will be ignored.

Examples

COLOR @X47
CLS

PRINT "This is some sample text. (This will disappear.) "
WHILE (INKEY() = "") DELAY 1

BACKUP 22

COLOR @X1F

CLREOL

PRINT "This goes to the end of the line."

See Also

CURCOLOR) Function, DEFCOLOR Statement, DEFCOLORQ Function

The PPL Development Kit 8 л

Chapter 7 PPL Reference

CONFFLAG Statement

Function

Set specified flags in the current conference for the current user.

Syntax

CONFFLAG confnum, flags

confnum An integer expression containing the conference number to affect.

flags An integer expression containing the flags to set.

Remarks

Each user on the BBS has a set of five flags for each conference that control various settings.

These flags control the users registration in a conference, their expired status in a conference,

whether or not they have a conference selected, whether or not they have mail waiting in a

conference, and whether or not they have SysOp priviledges in a conference. Any or all of

these flags may be set at once. To assist you in using this statement, five predefined constants

are available to specify each flag: F КЕС, F EXP, F SEL, F MW, and F SYS. To use

these constants simply add the ones you need together.

Examples

' Automatically register them in selected conferences
INTEGER i

FOR i - 1 TO 10

CONFFLAG i,F REG*F EXP*F SEL

NEXT

FOR i - 11 TO 20

CONFFLAG i,F КЕС+Е SEL

NEXT

See Also

CONFUNFLAG Statement

86 The PPL Development Kit

PPL Reference Chapter 7

CONFUNFLAG Statement

Function

Clear specified flags in the current conference for the current user.

Syntax

CONFUNFLAG confnum, flags

confnum An integer expression containing the conference number to affect.

flags An integer expression containing the flags to clear.

Remarks

Each user on the BBS has a set of five flags for each conference that control various settings.

These flags control the users registration in a conference, their expired status in a conference.

whether or not they have a conference selected, whether or not they have mail waiting in a

conference, and whether or not they have SysOp priviledges in a conference. Any or all of

these flags may be cleared at once. To assist you in using this statement. five predefined

constants are available to specify each flag: Е КЕС. Е EXP. F SEL. F_MW. and F_SYS.

To use these constants simply add the ones you need together.

Examples

' Automatically deregister them from selected conferences
INTEGER i

FOR і - 1 TO 10

CONFUNFLAG і,Р REG«F ЕХР+Р SEL

NEXT

FOR i - 11 TO 20
CONFUNFLAG i,F REG*F SEL

NEXT

See Also

CONFFLAG Statement

The PPL Development Kit 87

Chapter 7 PPL Reference

CURCOLOR() Function

Function

Returns the color in use by the ANSI driver.

Syntax

CURCOLOR ()

No arguments are required

Return Type & Value

INTEGER Returns the color code most recently issued to the ANSI driver.

Remarks

The @X code processor within PCBoard has the ability to save and restore color codes built in.
PCBoard accomplishes this by saving the current color whenever it encounters an @X00 and

reissuing the color change when it encounters an @XFF. Unfortunately, PCBoard will only

remember one color at a time. With this function you can save and restore as many colors as

your application needs.

Examples

INTEGER cc,x,y

COLOR QXOF

ANSIPOS 26,23

PRINT "Hit the SPACE BAR to continue"
WHILE (KINKEY() «» " ") DO

CLS

LET x = 1«RANDOM(57)

LET y = 1+RANDOM(21)
PUSH 1+RANDOM(14)

GOSUB sub

LET сс - CURCOLOR()
PUSH @X0F

GOSUB sub
PUSH cc

GOSUB sub

ANSIPOS 1,ү

CLREOL

ENDWHILE

: sub
INTEGER c

POP c

COLOR c
ANSIPOS x,y

PRINT "PCBoard 15.0 with PPL!"
DELAY 18

RETURN

See Also

COLOR Statement, DEFCOLOR Statement, DEFCOLOR(Q Function

88 The PPL Development Kit

PPL Reference Chapter 7

CURCONF() Function

Function

Get the current conference number.

Syntax

CURCONF ()

No arguments are required

Return Type & Value

INTEGER Returns an integer with the current conference number.

Remarks

This function can be useful in configuring a PPL program to work in different ways in

different conferences. As a quick example, we have a PPE file on Salt Air that interfaces with

the enter message command. If a user is in certain conferences we prompt them for additional

information that we will likely need, otherwise we skip to the normal enter message process.

Of course, that's just one example; you are sure to have other uses for it.

Examples

IF (CURCONF() = 6) THEN ' The Salt Air beta conference is 6
PRINTLN "You are leaving a message in the beta conference."
PRINTLN "Be sure to leave your file date and time"
PRINTLN "and a complete description of the problem."

ENDIF

KBDSTUFF TOKENSTR()

See Also

MESSAGE Statement, U NAME Function

The PPL Development Kit 89

Chapter 7 PPL Reference

CURSEC() Function

Function

Get the users current security level.

Syntax

CURSEC ()

No arguments are required

Return Type & Value

INTEGER Returns an integer with the current security level of the user.

Remarks

Although the users primary security level may be accessed via the U_SEC variable after using

the GETUSER statement, it is often necessary to know the users security level right now after

taking into account whether or not they have expired access, additional security from joining a

specific conference, or additional security from the keyboard. This function will take all

variables into account and return the current ‘logical’ security level.

Examples

IF (CURSEC() « 100) PRINTLN "Insufficient security!"

See Also

U EXPSEC Variable, U SEC Variable

90 The PPL Development Kit

PPL Reference Chapter 7

DATE Type

Function

Declare one or more variables of type date.

Syntax

DATE varlarr(s[,s({,s])])[,var|arr(s{,s{,s]})]

var The name of a variable to declare. Must start with a letter [A-Z] which

may be followed by letters, digits [0-9] or the underscore | |. Мау be of

any length but only the first 32 characters are used.

arr The name of an array variable to declare. The same naming conventions

as var are used.

5 The size (0-based) of an array variable dimension. Any constant integer

expression is allowed.

Remarks

DATE variables are stored as julian dates. Valid dates are 0 (a special case to represent an

invalid date) and 1 (1 JAN 1900) through 36524 (31 DEC 1999) through 65535 (5 JUN 2079).
It is stored internally as a two byte unsigned integer. If a DATE is assigned to or from an

INTEGER type then the julian date (0-65535) is assigned. If a DATE is assigned to a

STRING type then it is automatically converted to the following format: "MM/DD/YY".
where MM is the two digit month (01-12), DD is the two digit day of the month (01-31). and

YY is the two digit year (00-99). If a foreign language is in usc that uses a different date
format (for example, "DD/MM/YY" or "YY.MM.DD") then that will be taken into account. If

a STRING is assigned to a DATE then PPL will do it's best to convert the string back to the
appropriate julian date. However, dates before 1980 will not be handled correctly because only

a two digit year is used in strings. All other types. when assigned to or from a DATE. will be

converted to an INTEGER first before being assigned to or from the DATE type.

Examples

DATE dob, today, range(2), leapYears(50)

See Also

BOOLEAN Type, INTEGER Type, MONEY Type, STRING Type, TIME Type

The PPL Development Kit 91

Chapter 7

92

PPL Reference

DATE() Function

Function

Get today's date.

Syntax

DATE ()

No arguments are required

Return Type & Value

DATE Returns a date for today.

Remarks

The date returned is represented internally in a julian format (the number of days since

January 1, 1900). It may be used as is (for display, storage or as an argument to another

function or statement) or assigned to an integer for arithmetic purposes.

Examples

PRINTLN "Today is ",DATE()

See Also

DAYOQ Function, DOW(Function, MKDATE(O Function, MONTH(Function, TIMEO

Function, YEAR() Function

The PPL Development Kit

PPL Reference Chapter 7

DAY() Function

Function

Extracts the day of the month from a date.

Syntax

DAY (dexp)

dexp Any date expression.

Return Type & Value

INTEGER Returns the day of the month from the specified date expression (dexp).

Valid return values are from 1 to 31.

Remarks

This function allows you to extract a particular piece of information about a DATE valuc. in

this case the day of the month of the date.

Examples

PRINTLN "Today is: ", DAY (DATE())

See Also

DATEQ Function, DOW() Function, MONTHO Function, ҮЕАКО Function

The PPL Development Kit 93

Chapter 7 PPL Reference

94

DBGLEVEL Statement

Function

Set a new debug level for PCBoard.

Syntax

DBGLEVEL level

level An integer expression with the new debug level.

Remarks

PCBoard supports an internal variable that allows debug information to be written to the

callers log. Level 0 specified no debug information. Levels | through 3 specify different
(increasing) levels of debug information. It can also be useful for debugging your PPL

programs. This statement allows you to change the PCBoard debug level on the fly without
the need to have the SysOp exit and change it in the BOARD.BAT file.

Examples

INTEGER newlvl
INPUT "New level",newlvl
NEWLINE

DBGLEVEL newlvl

See Also

DBGLEVELO Function, LOG Statement

The PPL Development Kit

PPL Reference Chapter 7

DBGLEVEL() Function

Function

Returns the debug level in effect.

Syntax

DBGLEVEL ()

No arguments are required

Return Type & Value

INTEGER Returns the current debug level.

Remarks

PCBoard supports an internal variable that allows debug information to be written to the

callers log. Level 0 specified no debug information. Levels 1 through 3 specify different

(increasing) levels of debug information. It can also be useful for debugging your PPL

programs. Using this function you can tie your debug information to a specified debug level of

your choosing.

Examples

IF (DBGLEVEL() = 1) LOG "Writing DEBUG info for "«PPENAME(),0

See Also

DBGLEVEL Statement, LOG Statement

The PPL Development Kit 95

Chapter 7 PPL Reference

DEC Statement

Function

Decrement the value of a variable.

Syntax

DEC var

var The variable with the value to decrement.

Remarks

Many programs require extensive addition and subtraction, and most often, a value is

increased or decreased by 1. This statement allows for a shorter, more efficient method of

decreasing (decrementing) a value by 1 (DEC i) than subtracting 1 from a variable and

assigning the result to the same variable (LET i =i - 1).

Examples

INTEGER i

PRINTLN "Countdown: "
LET i = 10

WHILE (i >= 0) DO
PRINTLN "T minus ",i

DEC i

ENDWHILE

See Also

INC Statement

96 The PPL Development Kit

PPL Reference Chapter 7

DEFCOLOR Statement

Function

Change the current color to the system default color.

Syntax

DEFCOLOR

No arguments are required

Remarks

This statement will change the color in use by PCBoard to the system default and send the

appropriate ANSI sequence to change color to the remote terminal software. This statement is

equivalent to COLOR рЕЕСОГ ОКО. Note that this statement will only affect a color
change if the user is in graphics mode. If the user is in non-graphics mode this statement will

be ignored.

Examples

COLOR @X47

CLS

PRINT "This is some sample text. (This will disappear.)"
WHILE (INKEY() - "") DELAY 1

BACKUP 22

DEFCOLOR
CLREOL

PRINT "This goes to the end of the line."

See Also

COLOR Statement, CURCOLORO Function, DEFCOLORO Function

The PPL Development Kit 97

Chapter 7

98

PPL Reference

DEFCOLOR() Function

Function

Return the system default color.

Syntax

DEFCOLOR ()

No arguments are required

Return Type & Value

INTEGER Returns the system default color as defined in PCBSetup.

Remarks

This function is useful in cases where you must pass a color to a statement but you want to

honor the SysOp's choice of default color for the system. In that case you cannot use the

DEFCOLOR statement because it does not return a value that you can pass to another

statement.

Examples

STRING yn
DEFCOLOR

CLS

LET yn - YESCHAR()
INPUTYN "Continue",yn,DEFCOLOR()
IF (yn - NOCHAR()) END

See Also

COLOR Statement, CURCOLORO Function, DEFCOLOR Statement

The PPL Development Kit

PPL Reference Chapter 7

DEFS Constant

Function

Used when no special statement parameters or flags are needed and defaults are sufficient.

Value

0 = 0b = 00 = 0h

Remarks

There are many statements that take special values as parameters or flags as an indication to

do some special processing. This constant is meant to be used by itself when you do not need

any other special constant value.

Examples

STRING ans

LET ans = NOCHAR()
INPUTSTR "Run program now",ans,QXOE,1,"YyNn",DEFS
IF (UPPER(ans) - NOCHAR()) END

See Also

FALSE Constant, TRUE Constant

The PPL Development Kit 99

Chapter 7 PPL Reference

DELAY Statement

Function

Pause execution for a specified period of clock ticks.

Syntax

DELAY ticks

ticks An integer expression with the number of clock ticks to pause.

Remarks

It is often desireable to wait for a precise time interval for various purposes. This function will

allow you to specify an interval to delay in clock ticks. One clock tick is approximately 1/18.2

of a second. So to delay for approximately one second, you should use DELAY 18. The basic

formula to use is (seconds to delay*18.2) and then round off to the nearest whole number.

Note however that PPL doesn't support floating point arithmetic, so if you want to calculate the

delay interval at run time you should use something like (seconds to delay*182)/10.

Examples

INTEGER i

PRINTLN "Countdown:"
LET i - 10

WHILE (i »- 0) DO

PRINTLN "T minus ",i
DEC i

DELAY 18
ENDWHILE

See Also

SOUND Statement

100 The PPL Development Kit

PPL Reference Chapter 7

DELETE Statement

Function

Delete a specified file from the disk it resides on.

Syntax

DELETE file

file A string expression with the drive, path and file name to delete.

Remarks

It is always a good idea to leave things as you found them (as much as possible). This

statement allows you to delete temporary files created by your PPE with the

FCREATE/FOPEN/FAPPEND statements.

Examples

INTEGER retcode
STRING s
FCREATE 1,"TMP.LST",O WR,S, DB
LET s - "START"
WHILE (LEN(s) » 0) DO

LET s = ""
PRINTLN "Enter a name or ENTER alone to quit:"
INPUT "Name",s

IF (LEN(s) > 0) FPUTLN 1,5

ENDWHILE

FCLOSE 1

SHELL l,retcode,"SORT","« TMP.LST > TMP.SRT"

NEWLINE

PRINTLN "Unsorted List:"
PRINTLN "-------------- "

DISPFILE "TMP.LST",DEFS

NEWLINE

PRINTLN "Sorted List:"
PRINTLN "-------------- "

DISPFILE "TMP.SRT",DEFS

DELETE "TMP.LST"

DELETE "TMP.SRT"

See Also

EXISTO Function, FILEINF() Function, READLINEQ Function, RENAME Statement

The PPL Development Kit 101

Chapter 7 PPL Reference

DELUSER Statement

Function

Flag the user online on the current node for deletion.

Syntax

DELUSER

No arguments are required

Remarks

This statement will set the delete user record flag to TRUE. This will merely flag

PCBSystemManager to pack out the user during the next pack operation. If you want to make

sure the user doesn't log back in before being packed out, use GETUSER, set his U SEC and

U_EXPSEC variables to 0, and use the PUTUSER statement to write the changes to the user

record.

Examples

GETUSER

IF (U_CMNT2 = "BAD USER") THEN

PRINTLN "Just a friendly note to say,"
PRINTLN "I hope you have a rotten day!"
PRINTLN "Proceeding with automatic user record deletion..."
DELUSER

LET U SEC - 0

LET U EXPSEC - O

PUTUSER

ENDIF

See Also

GETUSER Statement, PUTUSER Statement, U EXPSEC Variable, U SEC Variable

102 The PPL Development Kit

PPL Reference Chapter 7

DIR Statement

Function

Execute the file directories command with desired sub-commands.

Syntax

DIR cmds

cmds A string expression with any desired sub-commands for the file directory

command.

Remarks

This statement will allow you to access file directories (the F command from the main menu).

and any file directory sub-commands, under PPE control. Note that this statement will destroy

any previously tokenized string expression. If you have string tokens pending at the time of

the DIR statment you should save them first and then retokenize after the DIR statement is

complete.

Examples

INTEGER retcode
SHOWOFF
OPENCAP "NEWFILES.LST",retcode

KBDSTUFF CHR(13)
DIR "N;S;A;NS"

CLOSECAP

SHOWON

SHELL TRUE,retcode,"PKZIP","-mex NEWFILES NEWFILES.LST"

KBDSTUFF "FLAG NEWFILES.ZIP"

See Also

BLT Statement, JOIN Statement, QUEST Statement

The PPL Development Kit 103

Chapter 7

104

PPL Reference

DISPFILE Statement

Function

Display a specified (or alternate) file.

Syntax

DISPFILE file,flags

file A string expression with the file name (or base file name) to display.

flags Ап integer expression with alternate file flags.

Remarks

This statement will allow you to display a file to the user, and optionally to have PCBoard look

for alternate security, graphics, and/or language specific files. The flags parameter should be

0 for no alternate searching, GRAPH (1) for graphics specific searching, SEC (2) for security

specific searching, LANG (4) for language specific searching, or any combination thereof for
multiple alternate searches simultaneously.

Examples

STRING s

DISPFILE "MNUA",SEC*GRAPH*LANG
INPUT "Option",s

See Also

DISPSTR Statement, DISPTEXT Statement, OPTEXT Statement

The PPL Development Kit

PPL Reference Chapter 7

DISPSTR Statement

Function

Display a string of text.

Syntax

DISPSTR str

str A string expression to display (or %filename ог !PPEfile to execute).

Remarks

This statement in intended to allow you to easily display a string to the user and provide some

of the functionality of DISPTEXT. If the string to display begins with a percent sign and is

followed by a valid file name, then the file will be displayed to the caller instead of the string.

Alternately, the string could begin with an exclamation mark (and be followed by a legal file

name) to run a PPE file.

Examples

STRING s
INPUT "String",s

DISPSTR s

LET s = "Regular string”

DISPSTR s

DISPSTR "ҰС: \PCB\GEN\BRDM"

DISPSTR °!"+PPEPATH()+"SUBSCR.PPE"

See Also

DISPFILE Statement, DISPTEXT Statement, OPTEXT Statement

The PPL Development Kit 105

Chapter 7 PPL Reference

DISPTEXT Statement

Function

Display a specified prompt from the PCBTEXT file.

Syntax

DISPTEXT rec, flags

rec An integer expression with the PCBTEXT record number to display.

flags An integer expression with display flags.

Remarks

This statement will allow you to display any prompt from the PCBTEXT file to the user

according to a set of display flags. Valid display flags are BELL, DEFS, LFAFTER,

LFBEFORE, LOGIT, LOGITLEFT, and NEWLINE.

Examples

DISPTEXT 192, BELL+NEWLINE+LOGIT
HANGUP

See Also

DISPFILE Statement, DISPSTR Statement, OPTEXT Statement

106 The PPL Development Kit

PPL Reference Chapter 7

DOINTR Statement

Function

Generate a system interrupt.

Syntax

DOINTR int,ax, bx,cx,dx,si,di,flags,ds,es

int An integer expression with the interrupt number to call (0 through 255).

others Integer expressions with 16-bit register values to pass to the interrupt (ax,

bx, cx, dx. si, and di are general purpose registers; ds and es are segment

registers; flags is the 80x86 processor status register).

Remarks

This statement allows practically unlimited flexibility in PPL. It allows you to access anv

system service available via the BIOS (video, disk, time, etc), DOS or other third party

interface (DESQview, NETBIOS, IPX/SPX, Btrieve, etc). The possibilities are limited only by

your imagination. Values that are returned via register may be accessed via the REG...()

functions. The values to pass to specific interrupts will vary by the interrupt and function

desired. WARNING!!! The DOINTR function can be a very valuable tool when used wisely:

it can also be extremely destructive when used improperly (either accidentally ог

intentionally). Use it at your own risk!

Examples

' Create subdirectory - DOS function 39h
INTEGER addr
STRING path

LET path = "C:\$TMPDIR$"

VARADDR path,addr
DOINTR 21h,39h,0,0,addr*€00010000h,0,0,0,addr/00010000h,0
IF (REGCF() & (REGAX() - 3)) THEN

PRINTLN "Error: Path not found"
ELSE IF (REGCF() & (REGAX() - 5)) THEN

PRINTLN "Error: Access Denied"
ELSE IF (REGCF()) THEN

PRINTLN "Error: Unknown Error"

ELSE

PRINTLN "Directory successfully created..."
ENDIF

See Also

B2WO Function, REG...() Functions

The PPL Development Kit 107

Сһаріег 7

108

PPL Reference

DOW() Function

Function

Determine the day of the week of a particular date.

Syntax

DOW (dexp)

dexp Any date expression.

Return Type & Value

INTEGER Returns the day of the week from the specified date expression (dexp).

Valid return values are from 0 (Sunday) to 6 (Saturday).

Remarks

This function allows you to extract a particular piece of information about a DATE value, in

this case the day of the week of the date. The specified date can be any valid DATE

expression.

Examples

PRINTLN "Today is: ", DOW(DATE())

See Also

DATEQ Function, DAY() Function, MONTHO Function, ҮЕАК() Function

The PPL Development Kit

PPL Reference Chapter 7

DTROFF Statement

Function

Turn off the serial port DTR signal.

Syntax

DTROFF

No arguments are required

Remarks

This statement turns off the serial port DTR signal. Most modems take this condition to mean

that they should hang up on a caller, and this is how PCBoard uses it. This statement can be

used when you need to hangup on a caller but don't want PCBoard to perform it's logoff

processing. Simply turn off CD checking and keyboard timeout checking and issuc the

DTROFF statement. Do whatever processing you want, then turn ОТК. keyboard timcout

testing, and CD loss testing back on to allow PCBoard to recycle normally. Note that DTR

should remain off for a period of time to ensure that the modem has time to react to it.

Consider 1/2 second (about 9 clock ticks) a reasonable delay.

Examples

BOOLEAN flag
KBDCHKOFF

CDCHKOFF

DTROFF

DELAY 18

DTRON

SENDMODEM "ATDTS551212" ' Please don't really dial this number!
WAITFOR "CONNECT", Ғ1а4,60

IF (!flag) SPRINLN "No connect found іп 60 seconds"

CDCHKON

KBDCHKON

See Also

BYE Statement, DTRON Statement, GOODBYE Statement, HANGUP Statement

The PPL Development Kit 109

Chapter 7 PPL Reference

DTRON Statement

Function

Turn on the serial port DTR signal.

Syntax

DTRON

No arguments are required

Remarks

This statement turns on the serial port DTR signal. This statement should be used after you've

used the DTROFF statement to hangup the modem when you need to hangup on a caller but

don't want PCBoard to perform it's logoff processing. Note that DTR should remain off for a

period of time, to ensure that the modem has time to react to it, before turning it back on.

Consider 1/2 second (about 9 clock ticks) a reasonable delay.

Examples

BOOLEAN flag
KBDCHKOFF

CDCHKOFF

DTROFF

DELAY 18

DTRON

SENDMODEM "ATDT5551212" ' Please don't really dial this number!
WAITFOR "CONNECT",flag,60

IF (!flag) SPRINLN "No connect found in 60 seconds"
CDCHKON

KBDCHKON

See Also

BYE Statement, DTROFF Statement, GOODBYE Statement, HANGUP Statement

110 The PPL Development Kit

PPL Reference Chapter 7

ECHODOTS Constant

Function

Set the echo dots flag in an INPUTSTR or PROMPTSTR statement.

Value

1=1lb=lo=Ih

Remarks

The INPUTSTR and PROMPTSTR statements have the ability to disable echoing of user

input and instead echo dots in place of the user's input. This is useful in situations where the
information being entered is confidential and shouldn't be revealed to any other party. A good

example of this is the user's password.

Examples

STRING pwd

PROMPTSTR 148,pwd,12,MASK_PWD() , ECHODOTS+UPCASE

GETUSER

IF (pwd <> U_PWD) HANGUP

See Also

INPUTSTR Statement, PROMPTSTR Statement

The PPL Development Kit 111

Chapter 7 PPL Reference

END Statement

Function

Terminate PPE execution.

Syntax

END

No arguments are required

Remarks

This statement may be used to normally terminate PPE execution at any point. If you do not
have one in your program one is automatically inserted at the end of your source for you at

compile time. Additionally, if your PPL application is being used as a script questionnaire,

this statement will save any responses written to channel 0 to the script answer file.

Examples

DATE а
INTEGER i

STRING s

LET s - "01-20-93"
LET d z 5
IF (DATE() < а) THEN

PRINTLN "Your calendar is off!"
END

ENDIF

LET i = а
PRINTLN "The seige continues: Day ",DATE()-i+1
END

See Also

RETURN Statement, STOP Statement

112 The PPL Development Kit

PPL Reference Chapter 7

ERASELINE Constant

Function

Set the erase line flag in an INPUTSTR or PROMPTSTR statement.

Value

32 = 100000b = 400 = 20h

Remarks

The INPUTSTR and PROMPTSTR statements have the ability to erase the current line after

the user presses ENTER. This is the technique used by the MORE and WAIT statements to

clean up after themselves.

Examples

STRING s

INPUTSTR "Press ENTER со continue",s,@X0E,0,"",ERASELINE

See Also

INPUTSTR Statement, PROMPTSTR Statement

The PPL Development Kit 113

Chapter 7 PPL Reference

EXIST() Function

Function

Determine whether or not a file exists.

Syntax

EXIST (file)

file A string expression with the drive, path and file name to check.

Return Type & Value

BOOLEAN Returns TRUE if the file exists on the specified drive and path, FALSE

otherwise.

Remarks

It is often necessary to check for the existence of a file. For example, you wouldn't want to

display or otherwise process a file that doesn't exist. This function will report whether or not a

specified file exists on a particular drive and path. The drive will default to the current drive

and the path will default to the current directory if not specified.

Examples

STRING file
LET file = "NEWS. "+STRING (CURNODE())
IF (EXIST(file)) DISPFILE file,0

See Also

DELETE Statement, FILEINF() Function, READLINEQ Function, RENAME Statement

114 The PPL Development Kit

PPL Reference Chapter 7

FALSE Constant

Function

To provide a named constant for the boolean false value in boolean expressions.

Value

0 =0b=00=0h

Remarks

BOOLEAN logic is based on two values: TRUE (1) and FALSE (0). The literal numeric

constants 0 and 1 may be used in expressions, or you may use the predefined named constants

TRUE and FALSE. They make for more readable, maintainable code and have no more

overhead than any other constant value at run time.

Examples

BOOLEAN flag
LET flag = TRUE
WHILE (!flag) DO

INPUTSTR "Text",s,Q0X0E,60,"ABCDEFGHIJKLMNOPQRSTUVWXY2 ",UPCASE

PRINTLN s

IF (s - "QUIT") LET flag - FALSE

ENDWHILE

See Also

DEFS Constant, TRUE Constant

The PPL Development Kit 115

Chapter 7 PPL Reference

FAPPEND Statement

Function

Open a file for append access.

Syntax

FAPPEND chan, file,am,sm

chan An integer expression with the channel to use for the file (0 through 7).

file A string expression with the file specification to open.

am An integer expression with the desired access mode for the file.

sm An integer expression with the desired share mode flags for the file.

Remarks

This statement allows a PPL application to open a file for append access. Often you need to

add information to an existing file without destroying the existing information in the file.

FCREATE completely destroys the file being opened if it already exists, and FOPEN will

simply position you at the beginning of the file where you would overwrite data. This

statement will allow you to add the necessary information to the end of a file without

destroying the file or any existing information in the file. The chan parameter must be 0

through 7; 0 is reserved for the answer file when a PPL script questionnaire is in use but is

available for all other applications. However, it is recommended you avoid channel 0 unless

you really need to open 8 files at once. The am parameter should be one of the following

constant values: O_RD (for read access), O_WR (for write access), or O_RW (for read/write

access). Note that the FAPPEND statement actually requires О RW access, whatever you

specify doesn't really matter as it will be overridden by PPL. but you must specify it to

maintain compatibility with the FCREATE and FOPEN statements. Finally, the sm

parameter should be one of the following constants: S_DN (for deny none sharing), S_DR

(for deny read sharing), S_DW (for deny write sharing), or S_DB (for deny both sharing).

Also, if the file specified doesn't exist, it will automatically be created.

Examples

FAPPEND 1,"C:\PCB\MAIN\PPE.LOG",0O_RW,S_DB
FPUTLN 1, "Кап "«PPENAME()*" on "+STRING(DATE())+" at “+STRING (TIME ())
FCLOSE 1

See Also

FCLOSE Statement, ЕСКЕАТЕ Statement, FOPEN Statement, FREWIND Statement

116 The PPL Development Kit

PPL Reference Chapter 7

FCL Constant

Function

Forces PCBoard to count lines and provide prompts after every screen full of information.

Value

2=10b=20=2h

Remarks

The STARTDISP statement takes a single argument to start displaying information in a

certain format. FCL tells PCBoard to count lines and pause as needed during the display of

information. FNS tells PCBoard to not stop during the display of information. NC instructs

PCBoard to start over with the last specified mode (FCL or FNS).

Examples

INTEGER i
STARTDISP FCL
FOR i = 1 to 100

PRINTLN "This is line ",i
NEXT

See Also

FNS Constant, NC Constant

The PPL Development Kit 117

Chapter 7 PPL Reference

FCLOSE Statement

Function

Close an open file.

Syntax

FCLOSE chan

chan An integer expression with the open channel to close (0 through 7).

Remarks

This statement should be used to close a file channel after it has been created/opened with an

FCREATE, FOPEN, or FAPPEND statement. If you should forget to close your files by the

end of your PPL application, PPL will automatically close them for you. However, if you need

to process many files, it will usually be required that you open a few at a time and close them

before going on to the next set of files.

Examples

FOPEN 1, "C:\PCB\MAIN\PPE.LOG",O_RD, S, DW

FGET 1,hdr

FCLOSE 1

IF (hdr <> "Creating PPE.LOG file . . .") THEN
PRINTLN “Error: PPE.LOG invalid"
END

ENDIF

See Also

FAPPEND Statement, FCREATE Statement, FOPEN Statement, FREWIND Statement

118 The PPL Development Kit

PPL Reference Chapter 7

FCREATE Statement

Function

Create and open a file.

Syntax

FCREATE chan, file,am,sm

chan An integer expression with the channel to use for the file (0 through 7).

file A string expression with the file specification to create and open.

am An integer expression with the desired access mode for the file.

sm An integer expression with the desired share mode flags for the file.

Remarks

This statement allows a PPL application to force the creation and opening of a file. even if it

already exists. Creation means that any information previously in the file (if it already exists)

will be lost and you will be starting over with an empty file. The chan parameter must be 0

through 7; 0 is reserved for the answer file when a PPL script questionnaire is in use but is

available for all other applications. However, it is recommended you avoid channel 0 unless

you really need to open 8 files at once. The am parameter should be one of the following

constant values: O RD (for read access), O WR (for write access), or O RW (for read/write

access). Note that the FCREATE statement forces the creation of an empt file so it doesn't

make much sense to use O RD, as there is nothing to read, unless you only want to create the

file. Finally, the sm parameter should be one of the following constants: S DN (for депу

none sharing), S DR (for deny read sharing). S DW (for deny write sharing), or S DB (for

deny both sharing).

Examples

FCREATE 1, "C:\PCB\MAIN\PPE.LOG",0O_WR, 8 ЮМ

FPUTLN l,"Creating PPE.LOG file . .
FCLOSE 1

See Also

FAPPEND Statement, FCLOSE Statement, FOPEN Statement, FREWIND Statement

The PPL Development Kit 119

Chapter 7 PPL Reference

FERR() Function

Function

Determine whether or not an error has occurred on a channel since last checked.

Syntax

FERR (chan)

chan An integer expression with the channel to use for the file (0 through 7).

Return Type & Value

BOOLEAN Returns TRUE if an error has occurred on the specified channel since last

checked, FALSE otherwise.

Remarks

There are many reasons why errors can occur during file processing. The drive, path or file

may not exist, the end of the file may have been reached, the drive may be full, there could be

errors with the hardware. and so on. For maximum reliability, you should use the function to

check for errors after every file channel statement. PCBoard will automatically handle

alerting the user of the error in most cases. All you need is to know that an error occurred so

that you may continue processing else where or clean up and exit.

Examples

INTEGER i

STRING 5

FOPEN 1,"FILE.DAT",O RD,S, DW

IF (FERR(1)) THEN

PRINTLN "Error, exiting..."
END

ENDIF

ЕСЕТ 1,5

WHILE (!FERR(1)) DO

INC i

PRINTLN "Line ",RIGHT(i,3),": ",s

ЕСЕТ 1,5

ENDWHILE

FCLOSE 1

See Also

FAPPEND Statement, FCLOSE Statement, FCREATE Statement, FGET Statement,

FOPEN Statement, FPUT Statement, FPUTLN Statement, FPUTPAD Statement,

FREWIND Statement

120 The PPL Development Kit

PPL Reference Chapter 7

FGET Statement

Function

Get (read) a line from an open file.

Syntax

ЕСЕТ chan, var

chan An integer expression with the channel to read from (0 through 7).

var The variable into which to read the next line from chan.

Remarks

This statement is to be used for reading information, a line at a time, from a file that was

previously opened with read access. If there are multiple fields of information on the line then

you must parse them out manually.

Examples

INTEGER i

STRING s
FOPEN 1,"FILE.DAT",O RD,S DW

IF (FERR(1)) THEN

PRINTLN "Error, exiting..."
END

ENDIF

FGET 1,8
WHILE (!FERR(1)) DO

INC i

PRINTLN "Line ",RIGHT(i.3),": ",5

FGET 1,8

ENDWHILE

FCLOSE 1

See Also

FPUT/FPUTLN Statements, FPUTPAD Statement

The PPL Development Kit 121

Chapter 7

122

PPL Reference

FIELDLEN Constant

Function

Set the display field length flag in an INPUTSTR or PROMPTSTR statement.

Value

2 = 10b = 20 = 2h

Remarks

The INPUTSTR and PROMPTSTR statements have the ability to display the length of an

input field using "()" if the user has ANSI available. If you want to ensure that the user

knows how wide the input area is regardless of ANSI support being available, also use the

GUIDE constant.

Examples

STRING pwd

INPUTSTR "Enter id number", pwd, @X0E,4, "0123456789", FIELDLEN+GUIDE

IF (pwd <> "1234") PRINTLN "Bad id number"

See Also

GUIDE Constant, INPUTSTR Statement, PROMPTSTR Statement

The PPL Development Kit

PPL Reference Chapter 7

FILEINF() Function

Function

Access a piece of information about a file.

Syntax

FILEINF (file, item)

file A string expression with the path and file name to access information

about.

item An integer expression with the desired piece of information (1 through 9)

to retrieve about the specified file.

Return Type & Value

BOOLEAN Returns TRUE if the file exists or FALSE if file doesn't exist if item is 1.

DATE Returns the date stamp of the file if item ts 2.

INTEGER Returns one of the following for the specified values of item:

4 The size of the file in bytes;

5 The attribute bits of the file.

STRING Returns one of the following for the specificd values of item:

6 The drive of the file;

7 The path of the file:

8 The base name of the file;

9 The extension of the file.

TIME Returns the time stamp of thc file if item is 3.

Remarks

This function is designed to return information about a file. The file date, time. size and

attributes are accessible from DOS. In addition, this function can parse out the drive. path.

base name and extension if needed from the complete file specification. Finally, the EXIST()

function is duplicated in FILEINF().

The PPL Development Kit 123

ААЙ ҚК Ц (Цы

Chapter 7 PPL Reference

Examples

STRING file

WHILE (FILEINF(file,1)) INPUT "File",file

PRINTLN “ Date: “,PILEINF (file, 2)

PRINTLN " Time: ", FILEINF (file, 3)

PRINTLN “ Size: ",FILEINF (file, 4)

PRINTLN " Attr: ",FILEINF(file,5)

PRINTLN "Drive: ",FILEINF(file,6)

PRINTLN " Path: ", FILEINF(file,7)

PRINTLN " Name: ",FILEINF(file,8)

PRINTLN " Ext: ",FILEINF(file,9)

See Also

DELETE Statement, EXISTO Function, READLINEQ Function, RENAME Statement

124 The PPL Development Kit

PPL Reference Chapter 7

FMTCC() Function

Function

Formats a credit card number for display purposes.

Syntax

FMTCC (sexp)

sexp Any string expression.

Return Type & Value

STRING Returns sexp formatted in a credit card style for display purposes.

Remarks

This function will do one of the following: one, take a 13 character string and format it as
"XXXX XXX XXX XXX"; two, take a 15 character string and format it as "XXXX XXXXXX

XXXXX"; three, take a 16 character string and format it as "XXXX ХХХХ XXXX XXXX": or

four, return the string unmodified if it is not 13, 15 or 16 characters long.

Examples

STRING s
WHILE (!VALCC(s)) DO

INPUT "CC #",5
NEWLINES 2

ENDWHILE

PRINTLN ССТҮРЕ(6)," - ",ЕМТСС(в)

See Also

CCTYPE)O Function, УАТ. СС() Function

1 The PPL Development Kit 12

Chapter 7 PPL Reference

FNS Constant

Function

Forces PCBoard to not stop to provide prompts while displaying information.

Value

1=1b=lo=lh

Remarks

The STARTDISP statement takes a single argument to start displaying information in a

certain format. FCL tells PCBoard to count lines and pause as needed during the display of

information. FNS tells PCBoard to not stop during the display of information. NC instructs

PCBoard to start over with the last specified mode (FCL or FNS).

Examples

INTEGER i
STARTDISP FNS
FOR i = 1 to 100

PRINTLN "This is line ",i
NEXT

See Also

FCL Constant, NC Constant

126 The PPL Development Kit

PPL Reference Chapter 7

FOPEN Statement

Function

Open a file.

Syntax
FOPEN chan, file,am,sm

chan An integer expression with the channel to use for the file (0 through 7).

file A string expression with the file specification to open.

am An integer expression with the desired access mode for the file.

sm An integer expression with the desired share mode flags for the file.

Remarks

This statement allows a PPL application to open a file for read and/or write access and to

specify the method of sharing desired. The chan parameter must be 0 through 7; 0 is reserved

for the answer file when a PPL script questionnaire is in use but is available for all other
applications. However, it is recommended you avoid channel 0 unless you really need to open

8 files at once. The am parameter should be one of the following constant values: O_RD (for

read access), O WR (for write access), or O RW (for read/write access). Note that the

O RD constant expects the file to already exist; the other open constants will create the file if

it already doesn't exist. Finally, the sm parameter should be one of the following constants:

S_DN (for deny none sharing), S_DR (for deny read sharing), S_DW (for deny write sharing).

or S_DB (for deny both sharing).

Examples

STRING hdr

РОРЕМ 1,"C:\PCB\MAIN\PPE.LOG",O_RD, S_DW

FGET 1,hdr
FCLOSE 1

IF (hdr <> "Creating PPE.LOG file . . .") THEN
PRINTLN "Error: PPE.LOG invalid"
END

ENDIF

See Also

FAPPEND Statement, FCLOSE Statement, FCREATE Statement, FREWIND Statement

The PPL Development Kit 127

Chapter 7 PPL Reference

FOR/NEXT Statement

Function

Execute a block of statments for a range of values.

Syntax

FOR var = start TO end [STEP inc]

statement (s)

NEXT

var The index variable for the loop that will be set to each value.

start Any valid PPL expression.

end Any valid PPL expression.

inc Any valid PPL expression. (1 if not specified).

Remarks

A FOR loop can consist of one or more statements. At the beginning of the loop the specified

variable (var) is initialized to the start expression. It is then checked against the end
expression. If start is greater than end (for positive values of inc) or less than end (for

negative values of inc) then the loop terminates. Otherwise, all the statements in the loop are

executed in order. At the NEXT statement the inc value (1 if not explicitly defined) is added

to var and the loop value is retested as described above.

Examples

BOOLEAN p(100)
INTEGER i

FOR i с 1 ТО 100 ' Initialize all to TRUE

LET p(i) = TRUE

NEXT

LET р(1) = FALSE

FOR i с 4 TO 100 STEP 2 ' Initialize every other one to FALSE
LET p(i) = FALSE

NEXT

See Also

GOSUB Statement, GOTO Statement, | IF/ELSEIF/ELSE/ENDIF Statement,

WHILE/ENDWHILE Statement, RETURN Statement

128 The PPL Development Kit

PPL Reference Chapter 7

FORWARD Statement

Function

Move the cursor forward a specified number of columns.

Syntax

FORWARD numcols

numcols An integer expression of the number of columns to move forward. Valid

values are 1 through 79.

Remarks

This statement will move the cursor forward, nondestructively, a specified number of columns.

It will work with or without ANSI. If ANSI is available (as reported by the ANSIONO

function) then it will use an ANSI positioning command; otherwise it will re-display the

specified number of characters that are already on screen. ANSI is usually faster, but
re-displaying the existing information will get the job done. Note that you cannot use this
function to move beyond column 80; to do so would require ANSI to move back up if

necessary. So, if the cursor is already in column 80 this statement will have no effect. And if

the cursor is in column 1 the maximum you could move forward would be 79 (column 1 + 79

columns = column 80).

Examples

PRINT "PIRNT is wrong"
DELAY 5*182/10
BACKUP 13

PRINT "RI"

FORWARD 6

PRINT "RIGHT"

DELAY 5*182/10
NEWLINE

WAIT

See Also

ANSIONQ Function, ANSIPOS Statement, BACKUP Statement, GETX() Function,

GETY(Function, GRAFMODEO Function

The PPL Development Kit 129

Chapter 7 PPL Reference

FPUT/FPUTLN Statements

Function

Put (wnite) a line to an open file (with an optional carriage return/line feed appended).

Syntax

FPUT chan, exp[,exp]

FPUT сһап(,ехр(,ехр11

chan An integer expression with the channel to write to (0 through 7).

exp An expression of any type to evaluate and write to chan.

Remarks

These statements will evalutate zero, one or more expressions of any type and write the results

to the specified channel number. The FPUTLN statement will append a carriage return/line

feed sequence to the end of the expressions; FPUT will not. Note that at least one expression

must be specified for FPUT, unlike the FPUTLN statement which need not have any

arguments passed to it other than the channel number.

Examples

FAPPEND 1, "FILE.DAT",O_WR,S_DB

FPUT 1,0 NAME()," ",DATE()

FPUTLN 1," ",TIME()," ",CURSEC()

ЕРОТ 1, "Logged!"
FPUTLN 1

FPUTLN 1,"Have a nice"+" day!"
FCLOSE 1

See Also

ЕСЕТ Statement, FPUTPAD Statement

130 The PPL Development Kit

PPL Reference Chapter 7

FPUTPAD Statement

Function

Put (write) a line of a specified width to an open file.

Syntax

ЕРОТ chan, exp,width

chan An integer expression with the channel to write to (0 through 7).

exp An expression of any type to evaluate and write to chan.

width An integer expression with the width to use to write exp. Valid values are

-256 through 256

Remarks

This statement will evalutate an expressions of any type and write the result to the specified

channel number. This statement will append a carriage return/line feed sequence to the сла of

the expression after padding it to the specified width with spaces. If width is positive, then

exp will be written right justified (left padded) to the file. If width is negative. then exp will be

written left justified (right padded) to the file.

Examples

FAPPEND 1,"FILE.DAT",O WR,S DB

FPUTPAD 1,U NAME(),40
FPUTPAD 1,U DATE(),20
FPUTPAD 1,U TIME(),20

FCLOSE 1

See Also

FGET Statement, FPUT/FPUTLN Statements

The PPL Development Kit 131

Chapter 7 PPL Reference

FRESHLINE Statement

Function

Move the cursor to a fresh line for output.

Syntax

FRESHLINE

No arguments are required

Remarks

Often while displaying information to the screen you will print a certain amount then want to

make sure you are on a clean line before continuing. This statement checks to see if you are in

column 1 of the current line. If you are, it assumes you are on a clean line and does nothing.

Otherwise, it calls the NEWLINE statement for you automatically.

Examples

INTEGER i, end
LET end - RANDOM(20)
FOR і - 1 TO end

PRINT RIGHT(RANDOM(10000),8)

NEXT

FRESHLINE

PRINTLN "Now we continue .

See Also

NEWLINE Statement, NEWLINES Statement

132 The PPL Development Kit

PPL Reference Chapter 7

FREWIND Statement

Function

Rewind an open file.

Syntax

FREWIND chan

chan An integer expression with the open channel to rewind (0 through 7).

Remarks

This statement should be used when you need to rewind a file channel after it has been

created/opened with an FCREATE, FOPEN, or FAPPEND statement. Rewinding a Піс

channel will flush file buffers, commit the file to disk, and reposition the file pointer to the

beginning of the file. This is useful when you need to start over processing a file that may

have changed and don't want to close and re-open the file.

Examples

STRING s
FAPPEND 1,"C:\PCB\MAIN\PPE.LOG",O_RW,S_DN

FPUTLN 1,U_NAME()

FREWIND 1

WHILE (!FERR(1)) DO

ЕСЕТ 1,5
РКІМТІМ 5

ENDWHILE

FCLOSE 1

See Also

FAPPEND Statement, FCLOSE Statement, ЕСКЕАТЕ Statement, FOPEN Statement

The PPL Development Kit 133

Chapter 7 PPL Reference

F_EXP Constant

Function

Set the conference expired access flag ina CONFFLAG or CONFUNFLAG statement.

Value

2 = 10b=20=2h

Remarks

There are five flags per conference maintained for each user. This flag is used to indicate

whether or not a user is registered in a specified conference after their subscription expiration

date.

Examples

CONFUNFLAG 5,F_REG+F_EXP+F_SEL ' Clear reg, exp & sel flags from conf 5

CONFFLAG 9,F REG-«F, EXP«F SEL ' Set reg, exp & sel flags for conf 9

See Also

F MW Constant, F REGConstant, F SEL Constant, F SYS Constant

134 The PPL Development Kit

PPL Reference Chapter 7

F MW Constant

Function

Set the conference mail waiting Пар in а CONFFLAG or CONFUNFLAG statement.

Value

10 - 100005 - 200 - 10h

Remarks

There are five flags per conference maintained for each user. This flag is used to indicate

whether or not a user has mail waiting in a specified conference.

Examples

CONFUNFLAG 5,F MW ' Clear mail waiting flag from conf 5

CONFFLAG 9,F MW ' Set mail waiting flag for conf 9

See Also

F EXP Constant, F REGConstant, F SEL Constant, F SYS Constant

The PPL Development Kit 135

Chapter 7 PPL Reference

F REG Constant

Function

Set the conference registration flag ina CONFFLAG or CONFUNFLAG statement.

Value

] = 16 = 10= Ih

Ветагкѕ

There are буе flags рег conference maintained for each user. This Пар is used to indicate

whether or not a user is registered in a specified conference.

Examples

CONFUNFLAG 5,FPF REG«F EXP«F SEL ' Clear reg, exp & sel flags from conf 5

CONFFLAG 9,F REG«F EXP«F SEL " Set reg, exp 6 sel flags for conf 9

See Also

F EXP Constant, F MW Constant, F SEL Constant, F SYS Constant

136 The PPL Development Kit

PPL Reference Chapter 7

F SEL Constant

Function

Set the conference selected flag in a CONFFLAG or CONFUNFLAG statement.

Value

4 = 100b = 40 = 4h

Remarks

There are five flags per conference maintained for each user. This flag is used to indicate

whether or not a user has a specified conference selected for message scans.

Examples

CONFUNFLAG 5,F REG-«F EXP«F SEL ' Clear reg, exp 6 sel flags from conf 5

CONFFLAG 9,F REG«F EXP«F SEL ' Set reg, exp & sel flags for conf 9

See Also

F EXP Constant, F MW Constant, F REG Constant, F SYS Constant

The PPL Development Kit 137

Chapter 7 PPL Reference

Е SYS Constant

Function

Set the conference SysOp access flag ina CONFFLAG or CONFUNFLAG statement.

Value

8 = 1000b = 100 = 8h

Remarks

There are five flags per conference maintained for each user. This flag is used to indicate

whether or not a user has conference SysOp access іп a specified conference.

Examples

CONFUNFLAG 5,F SYS ' Remove (unflag) conf sysop access from conf 5

CONFFLAG 9,F_SYS ' Grant (flag) conf sysop access for conf 9

See Also

F_EXP Constant, F_MW Constant, F_REG Constant, F_SEL Constant

138 The PPL Development Kit

PPL Reference Chapter 7

GETENV() Function

Function

Access the value of an environment variable.

Syntax

GETENV (name)

name А string expression with the name of the environment variable to access.

Return Type & Value

STRING Returns the value of the environment variable specified by name.

Remarks

This function allows you to access the value of any environment variable set at the time that

PCBoard was started. So, for example, the PATH environment variable could be used to

access data files somewhere on the path.

Examples

STRING path

LET path - GETENV()
TOKENIZE path
LET path - "DATAFILE.TXT"
WHILE (!EXIST(path) & (TOKCOUNT() » 0)) DO

LET PATH = GETTOKEN()*"DATAFILE.TXT"
ENDWHILE
IF (EXIST(path)) PRINTLN "Found ",path,"!"

See Also

PCBDATO Function

The PPL Development Kit 139

Chapter 7

GETTOKEN Statement

Function

Retrieve a token from a previous TOKENIZE statement.

Syntax

GETTOKEN var

var Variable to store the retrieved token in.

Remarks

PPL Reference

One of the strongest features of PCBoard is it's ability to take a series of stacked parameters

from a command line and use them all at once instead of requiring the user to navigate a series

of menus and select one option at each step of the way. The TOKENIZE statement is the PPL

equivalent of what PCBoard uses to break a command line into individual commands (tokens).

The number of tokens available may be accessed via the TOKCOUNTO function, and each

token may be accessed, one at a time, by the GETTOKEN statement and/or the

GETTOKEN?) function.

Examples

STRING cmdline
INPUT "Command", cmdline
TOKENIZE cmdline

PRINTLN "You entered ",TOKCOUNT(),"

WHILE (TOKCOUNT() » 0) DO

GETTOKEN cmdline
PRINTLN "Token: ",CHR(34),cmdline,CHR(34)

ENDWHILE

See Also

GETTOKENQ Function, TOKCOUNTO Function,

TOKENSTRO Function

140

TOKENIZE Statement,

The PPL Development Kit

PPL Reference

GETTOKEN() Function

Function

Retrieve a token from a previous TOKENIZE statement.

Syntax

GETTOKEN ()

No arguments are required

Return Type & Value

Chapter 7

STRING Returns the next available token from the most recent TOKENIZE

statement.

Remarks

One of the strongest features of PCBoard is it's ability to take a series of stacked parameters

from a command line and use them all at once instead of requiring the user to navigate a serics

of menus and select one option at each step of the way. The TOKENIZE statement is the PPL

equivalent of what PCBoard uses to break a command line into individual commands (tokens).

The number of tokens available may be accessed via the TOKCOUNTO function. and each

token may be accessed, one at a time, by the GETTOKEN statement and/or the

GETTOKEN) function.

Examples

STRING cmdline
INPUT "Command",cmdline
TOKENIZE cmdline
PRINTLN "You entered ",TOKCOUNT(),"
WHILE (TOKCOUNT() > 0) DO

LET cmdline - GETTOKEN()
PRINTLN "Token: ",CHR(34),cmdline,CHR(34)

ENDWHILE

See Also

GETTOKEN Statement, TOKCOUNTO Function,

TOKENSTRO Function

The PPL Development Kit

TOKENIZE Statement,

141

Chapter 7 PPL Reference

GETUSER Statement

Function

Fill predeclared variables with values from user record.

Syntax

GETUSER

No arguments are required

Remarks

There are many predeclared variables which may be used to access and change user

information. However, their values are undefined until you use the GETUSER statement, and

any changes you make don't take hold until you use the PUTUSER statement.

Examples

IF (PSA(3)) THEN

GETUSER
INPUT "Addr 1",U_ADDR(0)
INPUT “Addr 2",U_ADDR(1)
INPUT "City ",U ADDR(2)
INPUT "State ",U ADDR(3)
INPUT "ZIP ",U ADDR(4)
INPUT "Cntry ",U ADDR(5)
PUTUSER

ENDIF

See Also

PUTUSER Statement

142 The PPL Development Kit

PPL Reference Chapter 7

GETX() Function

Function

Report the X coordinate (column) of the cursor on screen.

Syntax

GETX ()

No arguments are required

Return Type and Value

INTEGER Returns the column (1-80) of the cursor on screen.

Remarks

This function is used to query the ANSI emulator in PCBoard the current X position of the

cursor. It may be used for saving the cursor position for future use or for saving the horizontal

cursor position while changing the vertical position with the ANSIPOS statement.

Examples

INTEGER x,y
STRING s

WHILE (UPPER(s) <> "QUIT") DO

INPUT "Text",s
PRINTLN - ",s

LET x = GETX()
LET y = GETY()
IF (y - 23) THEN

CLS
LET x - GETX()
LET y - GETY()

ENDIF

ANSIPOS 40,23
PRINT "@X8Fs=",s
ANSIPOS x,y

ENDWHILE

See Also

ANSIPOS Statement, ANSIONOQ Function, BACKUP Statement, FORWARD Statement,

GETYO Function, GRAFMODE?) Function

The PPL Development Kit 143

Chapter 7 PPL Reference

GETY() Function

Function

Report the Y coordinate (row) of the cursor on screen.

Syntax

GETY ()

No arguments are required

Return Type and Value

INTEGER Returns the row (1-23) of the cursor on screen.

Remarks

This function is used to query the ANSI emulator in PCBoard the current Y position of the

cursor. It may be used for saving the cursor position for future use or for saving the verticle

cursor position while changing the horizontal position with the ANSIPOS statement.

Examples

INTEGER x,y
STRING s

WHILE (UPPER(s) <> "QUIT") DO

INPUT "Text",s

PRINTLN " - ",s

LET x - GETX()
LET y - GETY()
IF (y - 23) THEN

CLS
LET x = GETX()
LET y = GETY()

ENDIF

ANSIPOS 40,23
PRINT "QX8Fs-",s

ANSIPOS х,у

ENDWHILE

See Also

ANSIPOS Statement, ANSION(Function, BACKUP Statement, FORWARD Statement,

GETXO Function, GRAFMODEO Function

144 The PPL Development Kit

PPL Reference Chapter 7

GOODBYE Statement

Function

Log the user off as though they had typed the G (goodbye) command.

Syntax

GOODBYE

No arguments are required

Remarks

There are multiple ways for the user to log off. One is by typing G at the command prompt.

That will warn them if they have files flagged for download and (optionally) confirm their

selection (incase they accidentally hit G and ENTER). Another is the BYE command.

PCBoard assumes that, if the user typed BYE instead of G, that they really want to log off,

didn't type it in accidentally, and want to leave now. The GOODBYE statement performs the

same processing as the PCBoard G command.

Examples

STRING s
INPUT "What do you want to do",s
IF (s = "G") THEN GOODBYE
ELSEIF (s = "BYE") THEN BYE
ELSE KBDSTUFF s
ENDIF

See Also

BYE Statement, DTROFF Statement, DTRON Statement, HANGUP Statement

The PPL Development Kit 145

Chapter 7 PPL Reference

GOSUB Statement

Function

Transfer program control and save the return information.

Syntax

GOSUB label

label The label to which control should be transferred.

Remarks

It is often necessary to perform an indentical set of instructions several times in a program.

This leaves you with two choices. One, rewrite the code several times (and hope you do it

right each time), or two, write it once as a subroutine, then use GOSUB to run it. This

statement will save the address of the next line so that a RETURN statement at the end of the

subroutine can instruct PPL to resume execution with the line following the GOSUB.

Examples

STRING Question, Answer
LET Question = “What is your street address ..."

GOSUB ask
LET Question = "What is your city, state and zip ..."

GOSUB ask
END

:ask ' Sub to ask a question, get an answer, and log them to a file
LET Answer = ""
PRINTLN "@XOE", Question
INPUT "",Answer

NEWLINES 2

FPUTLN 0,"Q: ",STRIPATX (Question)

FPUTLN 0, "А: ",Answer
RETURN

See Also

GOTO Statement, FOR/NEXT Statement, IF/ELSEIF/ELSE/ENDIF Statement,

WHILE/ENDWHILE Statement, RETURN Statement

146 The PPL Development Kit

PPL Reference Chapter 7

GOTO Statement

Function

Transfer program control.

Syntax

GOTO label

label The label to which control should be transferred.

Remarks

GOTO is an essential part of just about every programming language, and it is also an

overused part of every one of those languages. When you need to make a decision and alter

program flow based on some condition it is a necessary evil. For example. it is very useful in

getting out of deeply nested loops when a critical error of some sort occurs. For the most part.

avoid it if at all possible. Look for other options to write your program, such as block IF.

WHILE, and FOR statements. They are much easier to understand and maintain than code

with GOTO statements sprinkled liberally throughout.

Examples

INTEGER i
STRING 5

FOPEN 1,"FILE.DAT",O RD,S DW

WHILE (UPPER(s) «» "QUIT") DO

ЕСЕТ 1,5

IF (FERR(1)) THEN

PRINTLN "Error, aborting..."

GOTO exit
ENDIF

INC i

PRINTLN "Line ",i,": ",s

ENDWHILE

:exit
FCLOSE 1

See Also

GOSUB Statement, FOR/NEXT Statement, IF/ELSEIF/ELSE/ENDIF Statement,

WHILE/ENDWHILE Statement, RETURN Statement

The PPL Development Kit 147

Сһаріег 7

GRAFMODE() Function

Function

Report the graphics mode in use.

Syntax

GRAFMODE()

No arguments are required

Return Type and Value

STRING

Remarks

PPL Reference

Returns a letter indicating the current graphics supported.

This function will return one of four possible responses. "N" will be returned if no graphics

support is currently available. "A" will be returned for non-graphics users that do have ANSI

support available for positioning. "G" will be returned for users who support full ANSI

graphics. Finally, "R" will be returned for users who support RIPscrip.

Examples

IF

ELSE IF

ELSE IF

ELSE IF
ELSE
ENDIF
PRINTLN "

See Also

(GRAFMODE() - "R") THEN

(GRAFMODE() - "G") THEN

(GRAFMODE() - "A") THEN

(GRAFMODE() - "N") THEN

Graphics Supported"

PRINT

PRINT

PRINT
PRINT

"RIPscrip"

"Full ANSI"

PRINT "
"No"

"Unknown"

ANSI positioning"

ANSIPOS Statement, ANSION() Function, BACKUP Statement, FORWARD Statement,

СЕТХ() Function, GETY() Function

148 The PPL Development Kit

PPL Reference Chapter 7

GRAPH Constant

Function

Set the graphics specific file search flag іп а DISPFILE statement.

Value

1=1b=lo=Ih

Remarks

The DISPFILE statement will allow you to display a file to the user, and optionally to have

PCBoard look for alternate security, graphics, and/or language specific files. This flag

instructs PCBoard to search for alternate graphics files (ANSI or RIPscrip) via the С and R

suffix. The current graphics mode may be obtained with the GRAFMODE?)) function.

Examples

STRING s

DISPFILE “MNUA", SEC+GRAPH+LANG

INPUT "Option",s

See Also

DISPFILE Statement, GRAFMODE(Function, LANG Constant, SEC Constant

The PPL Development Kit 149

Сһаріег 7 PPL Reference

GUIDE Constant

Function

Set the display input guide flag in an INPUTSTR or PROMPTSTR statement.

Value

4 = 100b = 40 = 4h

Remarks

The INPUTSTR and PROMPTSTR statements have the ability to display the length of an

input field, regardless of ANSI availability, if you use this constant with the FIELDLEN

constant. If ANSI is not available and this constant is used, the user will see the input field

width marked using "(---)" above the input field.

Examples

STRING рма
INPUTSTR "Enter id number", pwd, @X0E,4, "0123456789", FIELDLEN+GUIDE
IF (pwd <> "1234") PRINTLN "Вай id number”

See Also

FIELDLEN Constant, INPUTSTR Statement, PROMPTSTR Statement

150 The PPL Development Kit

PPL Reference Chapter 7

HANGUP Statement

Function

Hangup on the user and perform abnormal logoff processing.

Syntax

HANGUP

No arguments are required

Remarks

This statement is useful in situations where you need to get the caller off immediately without

any delay or notice. It will hangup on the caller, do all logoff processing, and log an abnormal

logoff to the callers log.

Examples

STRING s
INPUT "What do you want to do",s

IF (s = "G") THEN GOODBYE
ELSEIF (5 = "ВҮЕ") THEN BYE
ELSEIF (s “HANG") THEN HANGUP

ELSE KBDSTUFF s

ENDIF

See Also

BYE Statement, DTROFF Statement, DTRON Statement, GOODBYE Statement

The PPL Development Kit 151

Chapter 7 PPL Reference

HELPPATH() Function

Function

Return the path of help files as defined in PCBSetup.

Syntax

HELPPATH ()

No arguments are required

Return Type & Value

STRING Returns the path of the PCBoard help files.

Remarks

This function will return the path where help files are located as defined in PCBSetup. This

can be useful when you want to add system help capabilities to your PPE application.

Examples

PRINTLN "HELP FOR THE R (READ) COMMAND: “
PRINTLN “------------------------------ "
NEWLINE
DISPFILE HELPPATH()+"HLPR" , GRAPH+LANG+SEC

See Also

PPEPATHO Function, SLPATHO Function, TEMPPATHO Function

152 The PPL Development Kit

PPL Reference Chapter 7

HIGHASCII Constant

Function

Set the allow high ASCII flag in an INPUTSTR or PROMPTSTR statement.

Value

4096 = 1000000000000b = 100000 = 1000h

Remarks

The INPUTSTR and PROMPTSTR statements have the ability to allow high ASCII

characters to be input regardless of the valid character string specified, but only if the SysOp

has disabled the high ASCII filter in PCBSetup.

Examples

STRING pwd

INPUTSTR "Enter password", pwd, @X0E,4,MASK_ASCII() ,HIGHASCIT

GETUSER

IF (pwd <> U_PWD) HANGUP

See Also

INPUTSTR Statement, PROMPTSTR Statement

The PPL Development Kit 153

Chapter 7

154

PPL Reference

HOUR() Function

Function

Extract the hour from a specified time of day.

Syntax

HOUR (сехр)

texp Any time expression.

Return Type & Value

INTEGER Returns the hour from the specified time expression (texp). Valid return

values are from 0 to 23.

Remarks

This function allows you to extract a particular piece of information about a TIME value, in

this case the hour of the time of day expression.

Examples

PRINTLN "The hour is ",HOUR(TIME())

See Also

MINO Function, SEC() Function, TIME Function

The PPL Development Kit

PPL Reference Chapter 7

125() Function

Function

Convert an integer to a string in a specified number base.

Syntax

125 (int, base)

int Any integer expression to convert to string format.

base An integer expression with the number base (2 through 36) to convert to.

Return Type & Value

STRING Returns int converted to a string in the specified number base.

Remarks

People work with decimal (base 10) numbers, whereas computers work with binary (base 2)

numbers. However. it is often more convienient to display numbers to the user in a format

other than decimal for clarity, compactness, or other reasons. This function will convert a

number to string format іп any number base from 2 to 36. So. I2S(10,2) would return a string

of "1010"; 128(35,36) would return "Z".

Examples

INTEGER i,num
INPUTINT "Enter a number (decimal)",num, @X0E
FOR i - 2 TO 36

PRINTLN num," base 10 - ",I2S(num,i)," base ",i
NEXT

See Also

8210 Function

The PPL Development Kit 155

Сһаріег 7 PPL Reference

IF/ELSEIF/ELSE/ENDIF Statement

Function

Execute one or more statments if a condition is true.

Syntax

IF (Бехр) statement
-Or-

IF (bexp) THEN
statement (s)

(ELSEIF (bexp) THEN] ' optional in a block IF

[statement (5)]

[ELSEIF (bexp) THEN] ' you may have multiple ELSEIF statement(s)
[statement(s)]
(ELSE] ' optional in a block IF

[statement (s)]
ENDIF

bexp Any boolean expression.

statement Any valid PPL statement.

Remarks

The IF statement supports two types of structures: logical and block. A logical IF statement

is a single statement; if a condition is TRUE, execute a single statement. A block IF can be

one or more statements with multiple conditions to test for. The start of a block IF loop is

differentiated from a logical IF loop by the THEN keyword immediately after the condition.

In a block IF statement the first condition to evaluate to TRUE will be executed, after which

control will be transferred to the statement following the ENDIF. If none of the conditions are

TRUE by the time an ELSE statement is reached then the statements between the ELSE and

ENDIF will be processed. If none of the conditions are TRUE and an ELSE statement is

never found then none of the conditions will be executed: instead, control will be transferred to

the statement after the ENDIF.

Examples

IF (CURSEC() < 10) END ' Insufficient security, terminate execution

IF (CURSEC() < 20) THEN
PRINTLN "Your security is less than 20"

ELSEIF (CURSEC() > 30) THEN

PRINTLN "Your security is greater than 30"

ELSEIF (CURSEC() с 25) THEN

PRINTLN “Your security is 25"

ELSE

PRINTLN "Your security is level",CURSEC()
ENDIF

156 The PPL Development Kit

PPL Reference Chapter 7

See Also

GOSUB Statement, GOTO Statement, FOR/NEXT Statement, WHILE/ENDWHILE

Statement, RETURN Statement

The PPL Development Kit

Chapter 7 PPL Reference

INC Statement

Function

Increment the value of a variable.

Syntax

INC var

var The variable with the value to increment

Remarks

Many programs require extensive addition and subtraction, and often a value is only increased

or decreased by 1. This statement allows for a shorter, more efficient method of increasing

(incrementing) a value by 1 (INC i) than adding 1 to a variable and assigning the result to the

same variable (LET і = і + 1).

Examples

INTEGER i

PRINTLN "Countdown:"
LET i = 0

WHILE (i <= 10) DO

PRINTLN "T plus ",i

INC i

ENDWHILE

See Also

DEC Statement

158 The PPL Development Kit

PPL Reference Chapter 7

INKEY() Function

Function

Get the next key input.

Syntax

INKEY ()

No arguments are required

Return Type and Value

STRING Returns a single character for displayable characters or a string for cursor

movement and function keys.

Remarks

This function will return a single character long string for most key presses. Additionally. it

will return key names for function keys and cursor movement kevs if it finds an ANSI

sequence or DOORWAY mode sequence. It will return keystrokes from both the remote caller

as well as the local BBS node. However, realize that many function keys are reserved by

PCBoard for BBS related uses and may not be available for your applications that require

SysOp input.

Examples

STRING key
WHILE (key <> CHR(27)) DO

LET key = INKEY()
IF (LEFT(key,5) = "SHIFT") THEN

PRINTLN "It was a shifted key"
ELSEIF (LEFT(key,4) = “CTRL") THEN

PRINTLN “It was a control key”
ELSEIF (LEFT(key,3) = "ALT") THEN

PRINTLN "It was an alternate key"
ENDIF

PRINTLN "The key was ",key
ENDWHILE

See Also

КІМКЕҮ() Function, МСЕТВҮТЕ(Function, MINKEY() Function

The PPL Development Kit 159

Chapter 7 PPL Reference

INPUT Statement

Function

Prompt the user for a string of text.

Syntax

INPUT prompt, var

prompt A string expression with the prompt to display to the user.

var The variable in which to store the user's input.

Remarks

This statement will accept any string of input from the user, up to 60 characters maximum

length. In addition to displaying the prompt, it will display parenthesis around the input field

if the user is in ANSI mode. Because of this, you should generally limit your prompts to 15

characters or less.

Examples

BOOLEAN b

DATE d

INTEGER i

MONEY m

STRING 5

TIME t

INPUT "Enter BOOLEAN",b

INPUT "Enter DATE",d

INPUT "Enter INTEGER",i

INPUT "Enter MONEY",m

INPUT "Enter STRING",s

INPUT "Enter TIME",t
PRINTLN b," ",d," ",i

PRINTLN m," ",s," ",t

See Also

INPUT... Statements, INPUTSTR Statement, INPUTTEXT Statement, LET Statement,

PROMPTSTR Statement

160 The PPL Development Kit

PPL Reference Chapter 7

INPUT... Statements

Function

Prompt the user for a string of text of a specific length and with type dependent valid
characters.

Syntax

INPUT... prompt,var,color

prompt A string expression with the prompt to display to the user.

var The variable in which to store the user's input.

color An integer expression with the color to display the prompt in.

INPUT should be followed by one of the following types (without spaces between the INPUT

and type): CC, DATE, INT, MONEY, TIME, or YN.

Remarks

This statement will accept a string of input from the user, with a set of valid characters and up

to a maximum length (MAXLEN) determined by the statement in use. In addition to

displaying the prompt, it will display parenthesis around the input field if the user is in ANSI

mode. Because of this, you should generally limit your prompts to a length determined by the

following formula: (80-MAXLEN-4). Here are the valid character masks and maximum

length values for each of the input statements:

Val Chars | "0123456789" | "0123456789-/" | °0123456789+-"| "0123456789+-$." | "0123456789:"
Max Length 16 8 11 13 8

INPUT сс DATE INT MONEY TIME YN
ж

1

ж The INPUTYN statement valid characters are dependent оп the users language selection.

Usually they will be "YN" for english language systems. Other letters may be defined for

different languages in PCBML.DAT.

Examples

DATE d
INTEGER i

MONEY m

STRING cc, yn

TIME t
INPUTCC "Enter Credit Card Number",cc
INPUTDATE "Enter DATE",d

INPUTINT "Enter INTEGER",i

INPUTMONEY "Enter MONEY",m

INPUTTIME "Enter TIME",t

INPUTYN "Enter Yes/No ResponBe",8
PRINTLN cc," ",d," ",i

PRINTLN m," ",t," ",yn

The PPL Development Kit 161

Chapter 7 PPL Reference

See Also

INPUT Statement, INPUTSTR Statement, INPUTTEXT Statement, LET Statement,

PROMPTSTR Statement

162 The PPL Development Kit

PPL Reference Chapter 7

INPUTSTR Statement

Function

Prompt the user for a string of text in a specific format.

Syntax

INPUTSTR prompt,var,color,len, valid, flags

prompt A string expression with the prompt to display to the user.

var The variable in which to store the user's input.

color An integer expression with the color to display the prompt in.

len An integer expression with maximum length of text to input.

valid A string expression with the valid characters that the user may enter.

flags An integer expression with flags to modify how the statement works.

Remarks

This statement will accept a string of input from the user, up to the length defined. The

prompt parameter will be displayed to the user in the specified color before accepting input.

Only characters found in the valid parameter will be accepted. However. the flags parameter

may affect how prompt is displayed and the valid characters that are accepted. Individual

flags may be added together as needed. Several functions exist to easily specify commonly

used valid character masks. They arc MASK ALNUM(, MASK ALPHA(.

MASK ASCIIQ, MASK_FILEQ, MASK МОМО. MASK РАТНО). and MASK_PWDO.

Defined flag values are AUTO, DEFS, ECHODOTS, ERASELINE, FIELDLEN. GUIDE.

HIGHASCII, LFAFTER, LFBEFORE, NEWLINE, NOCLEAR, STACKED. UPCASE.

WORDWRAP. and YESNO.

Examples

BOOLEAN b

DATE d

INTEGER i

MONEY m

STRING s

TIME t

INPUTSTR "Enter BOOLEAN^,b,QGXOE,1,"^10^",LFBEFORE*NEWLINE

INPUTSTR "Enter DATE",d,@X0F,8,"0123456789-", NEWLINE+NOCLEAR
INPUTSTR "Enter INTEGER",1,0X07,20,MASK NUM(),NEWLINE
INPUTSTR "Enter MONEY",m,@X08,9,MASK_NUM()+".",NEWLINE+DEFS+FIELDLEN
INPUTSTR "Enter STRING",s,@X09,63,MASK_ASCII() , NEWLINE+FIELDLEN+GUIDE

INPUTSTR "Enter TIME",t,@X0A,5,"0123456789"+":",NEWLINE+LFAFTER
PRINTLN b," ",d," ",i

PRINTLN m," ",s," ",t

The PPL Development Kit 163

Chapter 7 PPL Reference

See Also

INPUT Statement, INPUT... Statements, INPUTTEXT Statement, LET Statement,

PROMPTSTR Statement

164 The PPL Development Kit

PPL Reference Chapter 7

INPUTTEXT Statement

Function

Prompt the user in a specified color for a string of text of specified length.

Syntax

INPUTTEXT prompt,var,color,len

prompt A string expression with the prompt to display to the user.

var The variable in which to store the user's input.

color An integer expression with the color to display the prompt in.

len An integer expression with maximum length of text to input.

Remarks

This statement will accept any string of input from the user, up to the length defined. In

addition to displaying the prompt, it will display parenthesis around the input field if the user

is in ANSI mode. Because of this, you should generally limit your prompts to (80-len-4)

characters or less.

Examples

BOOLEAN b
DATE
INTEGER
MONEY
STRING
TIME angra

INPUTTEXT "Enter BOOLEAN",b,QGXOE,1

INPUTTEXT "Enter DATE",d,GXOF,8

INPUTTEXT "Enter INTEGER",i,QX07,20

INPUTTEXT "Enter MONEY",m,QGX08,9

INPUTTEXT "Enter STRING",s,@x09,63
er TIME",t,GX0A,5 INPUTTEXT "Ent

PRINTLN b," "
PRINTLN m,"

See Also

INPUT Statement,

га,“

"VS,"

"i

. 6

INPUT... Statements, INPUTSTR Statement, LET Statement,

PROMPTSTR Statement

The PPL Development Kit

Chapter 7 PPL Reference

INSTR() Function

Function

Find the position of one string within another string.

Syntax

INSTR (str, sub)

str A string expression to look for sub in.

sub A string expression to search for.

Return Type & Value

INTEGER Returns the l-based position of sub within str or 0 if sub is not found

within str.

Remarks

This function is useful for determining if a particular word or phrase exists in a string. The

return value is the position of the sub string within the longer string. The first character of str

is position 1, the second is position 2, and so on. If sub is not found in str, 0 is returned.

Examples

STRING s
WHILE (INSTR(UPPER(s),"QUIT") = 0) DO

INPUTTEXT "Enter string",s,@X0E, 40
NEWLINE

PRINTLN s

ENDWHILE

See Also

LENO Function, SCRTEXTO Function, SPACE() Function, STRINGO Function

166 The PPL Development Kit

PPL Reference Chapter 7

INTEGER Type

Function

Declare one or more variables of type integer.

Syntax

INTEGER var|arr(s[,s[,s]l)t,var|arr(s[,s[.s]))]

var The name of a variable to declare. Must start with a letter [A-Z] which

may be followed by letters, digits [0-9] or the underscore [_]. May be of

any length but only the first 32 characters are used.

arr The name of an array variable to declare. The same naming conventions

as var are used.

5 The size (0-based) of an array variable dimension. Any constant integer

expression is allowed.

Remarks

INTEGER variables are stored as four byte signed long integers. The range of an INTEGER

is -2,147,483,648 - +2,147,483,647. An INTEGER assignment to a STRING will result in a
string with the representation of the number (similar to BASIC's STR$ function and C's Itoa

function). A STRING to INTEGER assignment will convert the string back to the four byte

binary integer value (similar to BASIC's VAL function and C's atol function). If ап

INTEGER is assigned to or from any other type, an appropriate conversion is performed

automatically by PPL.

Examples

INTEGER i, year, cardDeck(4*13), matrix(2,2), matrices(3,4,5)

See Also

BOOLEAN Type, DATE Type, MONEY Type, STRING Type, TIME Type

The PPL Development Kit 167

Chapter 7 PPL Reference

JOIN Statement

Function

Execute the join conference command with desired sub-commands.

Syntax

JOIN cmds

cmds A string expression with any desired sub-commands for the join conference

command.

Remarks

This statement will allow you to access the join conference command (the J command from the

main menu), and any join conference sub-commands, under PPE control. Note that this

statement will destroy any previously tokenized string expression. If you have string tokens

pending at the time of the JOIN statment you should save them first and then retokenize after

the JOIN statement is complete.

Examples

STRING yn
INPUTYN "Join SysOp conference", yn,@xX0E

IF (yn = YESCHAR()) JOIN 4

See Also

BLT Statement, DIR Statement, QUEST Statement

168 The PPL Development Kit

PPL Reference Chapter 7

KBDCHKOFF Statement

Function

Turn off keyboard timeout checking.

Syntax

KBDCHKOFF

No arguments are required

Remarks

PCBoard has built in automatic keyboard timeout detecting. What this means is that if

someone should remain online for a SysOp defined period of time without typing anything for

PCBoard to process, PCBoard will detect it, log it to the callers log, and recycle back to the

call waiting screen. Some applications require the ability to turn this off, for example, a
process that will take a while without interacting with the caller should turn off keyboard

timeout testing to keep PCBoard from thinking that the user has stopped entering information.

Normally, PCBoard would just recycle at that point. So, just before you start a section of code

that should continue for a while without user input, you should issue a KBDCHKOFF

statement. It will turn off the automatic keyboard timeout checking. When you've finished the

block where keyboard timeout checking has been disabled, issue the KBDCHKON statement

to turn it back on.

Examples

KBDCHKOPFP

WHILE (RANDOM(10000) <> 0) PRINT "." ' Something to take a long time!
KBDCHKON

See Also

CDCHKOFF Statement, CDCHKON Statement, KBDCHKON Statement

The PPL Development Kit 169

Chapter 7 PPL Reference

KBDCHKON Statement

170

Function

Turn on keyboard timeout checking.

Syntax

KBDCHKON

No arguments are required

Remarks

PCBoard has built in automatic keyboard timeout detecting. What this means is that if

someone should remain online for a SysOp defined period of time without typing anything for

PCBoard to process, PCBoard will detect it, log it to the callers log, and recycle back to the

call waiting screen. Some applications require the ability to turn this off; for example, a
process that will take a while without interacting with the caller should turn off keyboard
timeout testing to keep PCBoard from thinking that the user has stopped entering information.

Normally, PCBoard would just recycle at that point. So, just before you start a section of code

that should continue for a while without user input, you should issue a KBDCHKOFF

statement. It will turn off the automatic keyboard timeout checking. When you've finished the

block where keyboard timeout checking has been disabled, issue the KBDCHKON statement

to turn it back on.

Examples

KBDCHKOFF

WHILE (RANDOM(10000) <> 0) PRINT "." ' Something to take a long time!

KBDCHKON

See Also

CDCHKOFF Statement, CDCHKON Statement, KBDCHKOFF Statement

The PPL Development Kit

PPL Reference Chapter 7

KBDFILE Statement

Function

Stuff the contents of a text file into the keyboard buffer for later processing.

Syntax

KBDFILE file

file A string expression with the file name whose contents should be stuffed

into the keyboard buffer.

Remarks

This statement allows you to feed a series of keystrokes to PCBoard as though they were typed

in by the user. This is useful when you need to feed a series of commands to PCBoard one

right after another and they would add up to more than 256 characters (the maximum buffer

size for the KBDSTUFF statement).

Examples

INTEGER retcode
SHOWOFF

OPENCAP "NEWFILES.LST", retcode

KBDSTUFF CHR(13)

DIR "N;S;A;NS"

CLOSECAP

SHOWON

SHELL TRUE,retcode,"PKZIP","-mex NEWFILES NEWFILES.LST"

KBDFILE "FLAGFILE.CMD"

See Also

KBDSTUFF Statement

The PPL Development Kit 171

Chapter 7 PPL Reference

KBDSTUFF Statement

Function

Stuff a string into the keyboard buffer for later processing.

Syntax

KBDSTUFF str

str A string expression to stuff into the keyboard buffer for later processing.

Remarks

This statement allows you to feed a series of keystrokes to PCBoard as though they were typed
in by the user. This can be especially useful when you are replacing an existing command;

add your PPE file to the CMD.LST file so that it takes the place of the built in command, then
have your PPE stuff the original (or modified) command back to the keyboard buffer.

PCBoard will then process it as soon as you exit your PPE application. It can also be used

when building new commands that should perform several built in operations automatically.
A maximum of 256 characters at a time can be stuffed into the keyboard buffer. If you need

more than this, you should use the KBDFILE statement. Note that this statement may not be

used to access commands defined in the CMD.LST file.

Examples

INTEGER retcode
SHOWOFF

ОРЕМСАР "NEWFILES.LST",retcode

KBDSTUFF CHR(13)

DIR "N;S;A;NS"

CLOSECAP

SHOWON

SHELL TRUE, retcode, "PKZIP","-mex NEWFILES NEWFILES.LST"

KBDSTUFF "FLAG NEWFILES.ZIP"

See Also

KBDFILE Statement

172 The PPL Development Kit

PPL Reference Chapter 7

KINKEY() Function

Function

Get the next key input from the local keyboard only.

Syntax

KINKEY ()

No arguments are required

Return Type and Value

STRING Returns a single character for displayable characters or a string for cursor

movement and function keys.

Remarks

This function will return a single character long string for most key presses. Additionally. it

will return key names for function keys and cursor movement keys. It will only return

keystrokes from the local BBS node's keyboard. However, realize that many function keys are

reserved by PCBoard for BBS related uses and may not be available for your applications that

require SysOp input.

Examples

STRING key
WHILE (key <> CHR(27)) DO

LET key = KINKEY()

IF (LEFT(key,5) = "SHIFT") THEN

PRINTLN "It was a shifted key"
ELSEIF (LEFT(key,4) - "CTRL") THEN

PRINTLN "It was a control key"
ELSEIF (LEFT(key,3) - "ALT") THEN

PRINTLN "It was an alternate key"

ENDIF

PRINTLN "The key was ",key
ENDWHILE

See Also

INKEYO Function, MGETBYTE(Function, MINKEY() Function

The PPL Development Kit 173

Chapter 7 PPL Reference

LANG Constant

Function

Set the language specific file search flag in a DISPFILE statement.

Value

4 = 100b = 4o = 4h

Remarks

The DISPFILE statement will allow you to display a file to the user, and optionally to have

PCBoard look for alternate security, graphics, and/or language specific files. This flag

instructs PCBoard to search for alternate language files via the language extension. The

current language extension may be obtained with the ГАМСЕХТО function.

Examples

STRING s

DISPFILE "MNUA" , SEC+GRAPH+LANG
INPUT "Option",s

See Also

DISPFILE Statement, GRAPH Constant, LANGEXTO Function, SEC Constant

174 The PPL Development Kit

PPL Reference Chapter 7

LANGEXT() Function

Function

Get the file extension for the current language.

Syntax

LANGEXT ()

No arguments are required

Return Type and Value

STRING Returns a ".XXX" formatted string where XXX is the extension text (could

be 1, 2 or 3 characters long depending on the configuration and language

in use).

Remarks

This function allows you to access the file extension used by SysOp definable and system

language specific files. You may use it to create your own filenames that are language

specific.

Examples

PRINTLN "Brief user profile"
NEWLINE
PRINTLN " Security: ",CURSEC()
PRINTLN "Graphics Mode: ",GRAFMODE()

PRINTLN " Language: ",LANGEXT()

See Also

LANG Constant

The PPL Development Kit 175

Chapter 7 PPL Reference

LEFT() Function

Function

Access the left most characters from a string.

Syntax

LEFT (str,chars)

str A string expression to take the left most characters of.

chars An integer expression with the number of characters to take from the left

end of str.

Return Type & Value

STRING Returns a string with the left most chars characters of str.

Remarks

This function will return a sub string with the left most chars characters of a specified string.

This can be useful in data processing as well as text formatting. If chars is less than or equal

to 0 then the returned string will be empty. If chars is greater than the length of str then the

returned string will have spaces added to the left to pad it out to the full length specified.

Examples

WHILE (RANDOM(250) «» 0) PRINT LEFT(RANDOM(250),4)," "

STRING s
FOPEN 1,"DATA.TXT",O RD,S, DN

WHILE (!FERR(1)) DO
ЕСЕТ 1,5

PRINT RTRIM(LEFT(s,25)," ")," - "
PRINTLN RIGHT(s,LEN(s)-25)

ENDWHILE
FCLOSE 1

See Also

MIDO Function, RIGHT() Function

176 The PPL Development Kit

PPL Reference Chapter 7

LEN() Function

Function

Access the length of a string.

Syntax

LEN (str)

str Any string expression.

Return Type & Value

INTEGER Returns the length of a string.

Remarks

This function will return the length of a string. The value returned will always be between 0

(an empty string) and 256 (the maximum length of a string).

Examples

STRING s

FOPEN 1,"DATA.TXT",O, RD, S, DN

WHILE (!FERR(1)) DO

ЕСЕТ 1,5

PRINTLN "The length of the current string is “,LEN(s)

ENDWHILE

FCLOSE 1

See Also

INSTRO Function, SCRTEXTO Function, SPACE() Function, STRING() Function

The PPL Development Kit 177

Chapter 7 PPL Reference

LET Statement

178

Function

Evaluate an expression and assign the result to a variable.

Syntax

LET var = expr

-ог-
var = expr

var Variable to which the result of expr should be assigned.

expr Any valid PPL expression.

Remarks

The LET statement supports modes of operation: explicit and implicit. An explicit LET

statement always includes all of the parts in the first example above (the LET keyword, the

variable, the equal sign, and the expression). An implicit LET statement does not need the

LET keyword; the format (var = expr) is sufficient. However, the implicit form will not

always work. For example, if you had a variable named PRINT (which is also a statement

name) you could not use PRINT - expr; PPL expects the first word on a line to be a statement

name, and if it isn't, it is an implicit LET statement. Since PPL would find the PRINT

keyword first it would try to process the rest of the line as a PRINT statement. This is easily

avoided by using the LET keyword and making it an explicit LET statement (LET PRINT =

expr).

Examples

INTEGER i

STRING s

GETUSER

LET О PWD = "NEWPWD*

LET в в "This is а string"
LET i = 7*949*7
PUTUSER

See Also

INPUT Statement, INPUT... Statements, INPUTSTR Statement, INPUTTEXT Statement,

PROMPTSTR Statement

The PPL Development Kit

PPL Reference Chapter 7

LFAFTER Constant

Function

Set the extra line feed after prompt flag in a DISPTEXT, INPUTSTR, or PROMPTSTR

statement.

Value

256 = 100000000b = 4000 = 100h

Remarks

The INPUTSTR, PROMPTSTR, and DISPTEXT statements have the ability to send an

extra carriage return/line feed after a prompt is displayed automatically and without the need

to make a separate call to the NEWLINE statement.

Examples

STRING pwd

INPUTSTR "Enter id",pwd, @X0E, 4, "0123456789", LFBEFORE+NEWLINE+LFAFTER

IF (pwd <> "1234") PRINTLN "Bad id number”

See Also

DISPTEXT Statement, INPUTSTR Statement, LFBEFORE Constant, NEWLINE

Constant, PROMPTSTR Statement

The PPL Development Kit 179

Chapter 7 PPL Reference

LFBEFORE Constant

Function

Set the line feed before prompt flag in a DISPTEXT, INPUTSTR, or PROMPTSTR
statement.

Value

128 = 10000000b = 2000 = 80h

Remarks

The INPUTSTR, PROMPTSTR, and DISPTEXT statements have the ability to send a

carriage return/line feed before a prompt is displayed automatically and without the need to

make a separate call to the NEWLINE statement.

Examples

STRING pwd

INPUTSTR "Enter іа",рма, ёХ0Е, 4, "0123456789", LFBEFORE+NEWLINE+LFAFTER

IF (pwd <> "1234") PRINTLN “Bad іа"

See Also

DISPTEXT Statement, INPUTSTR Statement, LFAFTER Constant, NEWLINE Constant,

PROMPTSTR Statement

180 The PPL Development Kit

PPL Reference Chapter 7

LOG Statement

Function

Log a message to the callers log.

Syntax

LOG msg,left

msg A string expression to write to the callers log.

left A boolean expression with value TRUE if msg should be left justified.

FALSE if msg should be indented six spaces.

Remarks

There are two primary uses for this statement. First and foremost, it allows you to kcep the

SysOp informed of what the user does while using your PPL application. Secondly, it can

allow you to track information within your PPE while debugging.

Examples

BOOLEAN flag
PRINT "Type QUIT to exit..."
WAITFOR "QUIT", flag, 60
IF (!flag) LOG "User did not type QUIT", FALSE

LOG "***EXITING PPE***", TRUE

See Also

DBGLEVEL Statement, DBGLEVELO Function

The PPL Development Kit 181

Chapter 7

182

PPL Reference

LOGGEDON() Function

Function

Determine if a user has completely logged on to the BBS.

Syntax

LOGGEDON ()

No arguments are required

Return Type and Value

BOOLEAN Returns TRUE if the user has completed logging in, FALSE otherwise.

Remarks

There are some features of PPL that are not available until the user has completely logged in,

such as the user variables and functions and the CALLNUMO function. This function will

allow you to detect whether or not a user has completely logged in and if selected PPL features

are available.

Examples

IF (!LOGGEDON()) LOG "USER NOT LOGGED ON",0

See Also

CALLNUMO Function, ONLOCALO Function, ULLOGONSO Function

The PPL Development Kit

PPL Reference Chapter 7

LOGIT Constant

Function

Set the write prompt to callers log flag in а DISPTEXT statement.

Value

32768 = 1000000000000000b = 1000000 = 8000h

Remarks

The DISPTEXT statement has the ability to write a specified prompt to the callers log

automatically without the need to use the LOG statement. This flag will indent the prompt six

spaces in the callers log.

Examples

DISPTEXT 4, LFBEFORE+LFAFTER+BELL+LOGIT

See Also

DISPTEXT Statement, LOGITLEFT Constant

The PPL Development Kit 183

Chapter 7 PPL Reference

LOGITLEFT Constant

Function

Set the write prompt to callers log left justified Пар in a DISPTEXT statement.

Value

65536 - 10000000000000000b - 2000000 - 10000h

Remarks

The DISPTEXT statement has the ability to write a specified prompt to the callers log

automatically without the need to use the LOG statement. This flag will not indent the

prompt in the callers log.

Examples

DISPTEXT 4, LFBEFORE+LFAFTER+BELL+LOGITLEFT

See Also

DISPTEXT Statement, LOGIT Constant

184 The PPL Development Kit

PPL Reference Chapter 7

LOWER() Function

Function

Converts uppercase characters in a string to lowercase.

Syntax

LOWER (sexp)

sexp Any string expression.

Return Type & Value

STRING Returns sexp with all uppercase characters converted to lowercase.

Remarks

Although "STRING" is technically different from "string" (ie, the computer docsn't recognize

them as being the same because one is uppercase and the other is lowercase). it is often

necessary to save, display or compare information in a case insensitive format. This function

will return a string with all uppercase characters converted to lowercase. So, using the above

example, LOWER("STRING") would return "string".

Examples

STRING s
WHILE (UPPER(s) «» "QUIT") DO

INPUT "Text",s

PRINTLN LOWER(s)
ENDWHILE

See Also

UPPERO Function

The PPL Development Kit 185

Chapter 7 PPL Reference

LTRIM() Function

Function

Trim a specified character from the left end of a string.

Syntax

LTRIM(str,ch)

str Any string expression.

ch A string with the character to strip from the left end of str.

Return Type & Value

STRING Returns the trimmed str.

Remarks

A common need in programming is to strip leading and/or trailing spaces (or other

characters). This function will strip a specified character from the left end of a string and

return the trimmed string.

Examples

STRING s

LET s = " TEST

PRINTLN LTRIM(s," ") " Will print "TEST

PRINTLN LTRIM(^..... DA"*"TA..... я,4,4) ' Will print “DATA..... ”

PRINTLN LTRIM("..... DA"*"TA..... "7," ") ' Will print "..... DATA..... "

See Also

RTRIMO Function, TRIMO Function

186 The PPL Development Kit

PPL Reference Chapter 7

MASK_...() Functions

Function

Return a string for use as a valid character mask.

Syntax

MASK_... ()

No arguments are required

MASK _ should be followed by one of the following mask types: ALNUM, ALPHA, ASCII.

FILE, NUM, PATH, or PWD.

Return Type and Value

STRING Returns a string with a set of characters to use as valid input for an

INPUTSTR or PROMPTSTR statement.

Remarks

There are many situations in which you will need to use an INPUTSTR or PROMPTSTR

statement to access the input field length of flags. However, all you need to use a ‘standard’ set

of input characters. These functions provide you with some of the most common valid

character masks. They are) MASK АПГМОМО which returns A-Z., a-z, and 0-9:

MASK_ALPHAQ which returns A-Z and а-7; MASK ASCII() which returns all characters

from space (ASCII 32) to tilde (ASCII 126); MASK ЕП Е() which returns all legal file name

characters; MASK_NUMO which returns 0-9; MASK РАТНО) which returns all legal path

name characters; and, finally, MASK PWDYQ) which returns a set of valid characters for usc

in passwords.

Examples

INTEGER i

STRING s

INPUTSTR "Enter a number from 0 to 1000",1i,@X0E,4,MASK_NUM() ,DEFS

PROMPTSTR 148,s,12,MASK PWD(),ECHODOTS

INPUTSTR "Enter your comment",s,QGXOE,60,MASK ASCII(),DEFS

See Also

INPUTSTR Statement, PROMPTSTR Statement

The PPL Development Kit 187

Chapter 7 PPL Reference

MAXNODE() Function

Function

Determine how many nodes a system may have.

Syntax

MAXNODE()

No arguments are required

Return Type and Value

INTEGER Returns the node limit available to the system running the PPE file.

Remarks

Every package of PCBoard purchased comes with a license agreement that limits it to a

maximum number of nodes. This node limit restricts various features of PCBoard, such as the

WHO display and CHAT functions. This limit is available to your PPL applications via this

function.

Examples

INTEGER i

FOR i - 1 TO MAXNODE()

RDUNET i

IF ((UN STAT() = "A") | (UN, STAT() - "U")) THEN

BROADCAST i,i,"Hello, how are you?"
IF (PCBNODE() - i) PRINLN "Quit talking to yourself"

ENDIF

NEXT

See Also

PCBNODEO Function

188 The PPL Development Ki

PPL Reference Chapter 7

MESSAGE Statement

Function

Enter a message under PPL control.

Syntax

MESSAGE conf,to, from, sub,sec,pack,rr,echo, file

conf

to

from

sub

sec

pack

rr

echo

file

Remarks

An integer expression with the conference in which to post the message.

A string expression with the user name to which the message should be

sent.

A string expression with the user name that the message should be seni

from.

A string expression with the subject of the message.

A string expression with the desired security for the message ("N"for none

or "R" for receiver only).

A date expression with the packout date for the message (or 0 for no

packout date).

A boolean expression with the return receipt requested flag (TRUE to

request a return receipt, FALSE otherwise).

A boolean expression with the echo flag (TRUE to echo the message.

FALSE otherwise).

A string expression with the path and file name of the text file to use as the

message text.

This statement will allow you to leave a message from any user (or any 'name' you wish to use)

to any user on your system. This can be useful if you want to notify a user of information that

they should download in a QWK packet or that they might miss too easily as a quick one liner

on screen from the PPL.

Examples

IF (CURSEC() < 20) THEN
MESSAGE 0,0 МАМЕ (), "SYSOP", "REGISTER", "К", DATE() , TRUE, FALSE, "REG.TXT"

ENDIF

See Also

CURCONFO Function, О МАМЕОЦ Function

The PPL Development Kit 189

Chapter 7 PPL Reference

MGETBYTE() Function

Function

Get the next byte input from the modem.

Syntax

МСЕТВҮТЕ()

No arguments аге required

Return Type and Value

INTEGER Returns the value (0-255) of the next byte from the modem input buffer or

-1 if no bytes are pending.

Remarks

Any character may be received from the users modem. Normally PCBoard will filter and

convert strings (ESC sequences and DOORWAY codes) automatically. However, sometimes
this isn't desired and you need to access the incoming bytes directly. This function will look

directly for incoming characters from the modem and return them as a value from 0 to 255.

These numbers may be converted to characters with the CHRO function if necessary.

Examples

INTEGER byte
WHILE (byte <> 27) DO

LET byte = MGETBYTE()
PRINTLN "The byte value is ",byte

ENDWHILE

See Also

INKEYO Function, KINKEY(Function, MINKEYO Function

190 The PPL Development Kit

PPL Reference Chapter 7

MID() Function

Function

Access any sub string of a string.

Syntax

MID(str,pos,chars)

str А string expression to take the left most characters of.

pos An integer expression with the position within str to start taking the sub

string from.

chars Ап integer expression with the number of characters to take from str.

Return Type & Value

STRING Returns a string with the specified number of characters from the specified

position of str.

Remarks

This function will return a sub string with the specified number of characters and from the

specified position of str. This can be useful in data processing as well as text formatting. The

pos parameter may be less than 1 (the beginning of str) and greater than the length of str; if it

is spaces will be added to the beginning and/or ending as needed. If chars is less than or

equal to 0 then the returned string will be empty. If chars is greater than the available length

of str then the returned string will have spaces added to the end(s) to pad it out to the full

length specified.

Examples

WHILE (RANDOM(250) «» 0) PRINT MID(RANDOM(250),0,4)," "

STRING s
FOPEN 1,"DATA.TXT",O RD,S, DN
WHILE (!FERR(1)) DO

ЕСЕТ 1,5
PRINT LEFT(s,5),RTRIM(MID(s,5,20)," ")," - "

PRINTLN RTRIM(MID(s,LEN(s)-25,60)," ")
ENDWHILE
FCLOSE 1

See Also

LEFTO Function, RIGHT() Function

The PPL Development Kit 191

Chapter 7 PPL Reference

MIN() Function

Function

Extract the minute of the hour from a specified time of day.

Syntax

MIN (texp)

texp Any time expression.

Return Type & Value

INTEGER Returns the minute of the hour from the specified time expression (texp).

Valid return values are from 0 to 59.

Remarks

This function allows you to extract a particular piece of information about a TIME value, in

this case the minute of the hour of the time of day expression.

Examples

PRINTLN "The minute is ",МІМ(ТІМЕ())

See Also

HOURO Function, SEC(Function, TIME(Function

192 The PPL Development Kit

PPL Reference Chapter 7

MINKEY() Function

Function

Get the next key input from the modem only.

Syntax

MINKEY ()

No arguments are required

Return Type and Value

STRING Returns a single character for displayable characters or a string for cursor

movement and function keys.

Remarks

This function will return a single character long string for most key presses. Additionally, it

will return key names for function keys and cursor movement keys if it encounters ESC

sequences or DOORWAY codes. It will only return keystrokes from the remote users modem.

Examples

STRING key
WHILE (key <> CHR(27)) DO

LET key = MINKEY()
IF (LEFT(key,5) = "SHIFT") THEN

PRINTLN "It was a shifted key"
ELSEIF (LEFT (key,4) = "CTRL") THEN

PRINTLN “Іс was a control key"
ELSEIF (LEFT(key,3) = "ALT") THEN

PRINTLN "It was an alternate key"

ENDIF

PRINTLN "The key was ",key

ENDWHILE

See Also

ІМКЕҮ(Function, КІМКЕҮ() Function, MGETBYTEQ Function

The PPL Development Kit 193

Chapter 7 PPL Reference

MINLEFT() Function

Function

Return the users minutes left.

Syntax

MINLEFT()

No arguments are required

Return Type and Value

INTEGER Returns the number of minutes the user online has left to use.

Remarks

This function will allow you to access how much time the user has remaining. You could use

it to disable certain features at a certain point in their session. Note that this number can be
either the minutes left today or this session if the SysOp does not enforce daily time limits.

Examples

IF (MINLEFT() » 10) THEN

KBDSTUFF "D"«CHR(13)

ELSE

PRINTLN "Sorry, not enough time left to download"
ENDIF

See Also

ADJTIME) Function, MINON(Function, О TIMEONOQ Function

194 The PPL Development Ki

PPL Reference Chapter 7

MINON() Function

Function

Return the users minutes online.

Syntax

MINON ()

No arguments are required

Return Type and Value

INTEGER Returns the number of minutes the user online has used this session.

Remarks

This function will allow you to access how much time the user has used this session. You

could use it to allow or disallow certain features before a certain point in their session. Note

that this number will always be the minutes used this session regardless of whether or not the

SysOp enforces daily time limits.

Examples

IF (MINON() >= 10) THEN
KBDSTUFF "D"+CHR(13)

ELSE
PRINTLN “Sorry, you haven't been on long enough yet to download"

ENDIF

See Also

ADJTIME)) Function, MINLEFT() Function, U_TIMEON(Function

The PPL Development Kit 195

Chapter 7 PPL Reference

MODEM() Function

Function

Access the connect string as reported by the modem.

Syntax

MODEM ()

No arguments are required

Return Туре & Value

STRING Returns the modem connect string.

Remarks

PCBoard expects and requires certain information to be reported by the modem anytime a user

connects to the BBS. The minimum requirement is a string with the word CONNECT; other
information may be included, such as the connect speed, error correction, data compression,

etc. Should your PPL application have need of this information as well, it may be accessed

with this function.

Examples

FAPPEND 1, "MODEM. LOG", O_WR,S_DW

FPUTLN 1, LEFT (U_NAME() , 30) +MODEM()
FCLOSE 1

See Also

CALLIDO Function, CARRIERO Function

198 The PPL Development Kit

PPL Reference срһаре?

МОМЕҮ Туре

Function

Declare one or more variables of type money.

Syntax

MONEY var|larr(s[,s[(,s]])[{,var|arr(s{,s[,s)])]

var The name of a variable to declare. Must start with a letter [A-Z] which

may be followed by letters, digits [0-9] or the underscore [_]. May be of

any length but only the first 32 characters are used.

arr The name of an array variable to declare. The same naming conventions

as var are used.

5 The size (0-based) of an array variable dimension. Any constant integer

expression is allowed.

Remarks

MONEY variables are stored as positive or negative cents. The range of MONEY is
$-21,474,836.48 through $+21,474,836.47. It is stored internally as a four byte signed long
integer. If MONEY is assigned to or from an INTEGER type then the cents (-2.147.483.648

- *2,147,483,647) are assigned. If MONEY is assigned to a STRING type then it is

automatically converted to the following format: "$sD.CC", where s is the sign (- for negative

amounts, nothing for positive amounts), D is the dollar amount (one or more digits as needed)
and CC is the cents amount (00-99). If a STRING is assigned to MONEY then PPL will do

it's best to convert the string back to the appropriate amount of money. All other types. when

assigned to or from MONEY, will be converted to an INTEGER first before being assigned

to or from the MONEY type.

Examples

MONEY itemAmt, subTot, total, priceList(2,17)

See Also

BOOLEAN Type, DATE Type, INTEGER Type, STRING Type, TIME Type

The PPL Development Kit 199

Chapter 7

200

PPL Reference

MONTH() Function

Function

Extracts the month of the year from a specified date.

Syntax

MONTH (dexp)

dexp Any date expression.

Return Type & Value

INTEGER Returns the month from the specified date expression (dexp). Valid return

values are from | to 12.

Remarks

This function allows you to extract a particular piece of information about a DATE value, in

this case the month of the date.

Examples

PRINTLN "This month is: ",MONTH(DATE())

See Also

DATEQ Function, DAY() Function, DOW() Function, YEAR() Function

The PPL Development Kit

PPL Reference Chapter 7

MORE Statement

Function

Pause the display and ask the user how to continue.

Syntax

MORE

No arguments are required

Remarks

It is often necessary to pause in the display of information and wait for the user to catch up.

This statement allows you prompt the user on how to continue. The acceptable responses are

Y (or whatever letter is appropriate for the users language selection) to continue, N (or, again,

whatever letter is appropriate) to abort, or NS to continue in non-stop mode. It displays

prompt number 196 from the PCBTEXT file for the current language to let the user know

what is expected.

Examples

PRINTLN “Your account has expired!"
PRINTLN "You are about to be logged off"
MORE
PRINTLN "Call me voice to renew your subscription"

See Also

ABORTO Function, DISPTEXT Statement, INKEY() Function, PROMPTSTR Statement,

WAIT Statement

The PPL Development Kit 201

Chapter 7 PPL Reference

MPRINT/MPRINTLN Statements

Function

Print (write) a line to the caller's screen (modem) only (with an optional newline appended).

Syntax

MPRINT exp[,exp]

MPRINTLN [exp[,exp]]

exp An expression of any type to evaluate and write to the caller's screen.

Remarks

These statements will evalutate zero, one or more expressions of any type and write the results

to the modem for the caller's display. The MPRINTLN statement will append a newline to

the end of the expressions, MPRINT will not. Note that at least one expression must be

specified for MPRINT, unlike the MPRINTLN statement which need not have any

arguments passed to it. These statements only send information to the modem and do not
interpret @ codes; if the remote caller has ANSI then ANSI will be interpreted.

Examples

MPRINT "The name of the currently running PPE file is "
MPRINTLN PPENAME(),"."
MPRINT "The path where it is located is "
MPRINTLN PPEPATH(),"."

MPRINT "The date is ",DATE()," and the time is ",TIME(),"."
MPRINTLN

See Also

PRINT/PRINTLN Statements, SPRINT/SPRINTLN Statements

202 The PPL Development Kit

PPL Reference Chapter 7

NC Constant

Function

To re-start the display of information according to the current mode.

Value

0 = 06 = 00 = Oh

Remarks

The STARTDISP statement takes a single argument to start displaying information in a

certain format. FCL tells PCBoard to count lines and pause as needed during the display of

information. FNS tells PCBoard to not stop during the display of information. NC instructs

PCBoard to start over with the last specified mode (FCL or FNS).

Examples

INTEGER i,j

STARTDISP FCL

FOR i = 1 ТО 5

STARTDISP NC

FOR j = 1 to 50
PRINTLN "This is line ",j

NEXT

NEXT

See Also

FCL Constant, FNS Constant

The PPL Development Kit 203

Chapter 7 PPL Reference

NEWLINE Constant

Function

Set the new line after prompt flag in an INPUTSTR, PROMPTSTR, or DISPTEXT

statement.

Value

64 = 1000000b = 1000 = 40h

Remarks

The INPUTSTR, PROMPTSTR, and DISPTEXT statements have the ability to send a

carriage return/line feed after a prompt is displayed automatically and without the need to

make a separate call to the NEWLINE statement.

Examples

STRING pwd

INPUTSTR "Enter id",pwd, @X0E,4, "0123456789" , LFBEFORE+NEWLINE+LFAFTER
IF (pwd <> "1234") PRINTLN "Bad id"

See Also

DISPTEXT Statement, INPUTSTR Statement, LFAFTER Constant, LFBEFORE

Constant, PROMPTSTR Statement

204 The PPL Development Kit

PPL Reference Chapter 7

NEWLINE Statement

Function

Move the cursor to the beginning of the next line.

Syntax

NEWLINE

No arguments are required

Remarks

This statement should be used for moving to the beginning of the next line on screen. scrolling

if necessary. It will do so regardless of the current cursor position. unlike the FRESHLINE

statement.

Examples

INTEGER i, end

LET end = RANDOM(20)
FOR i = 1 TO end

PRINT RIGHT (RANDOM(10000), 8)

NEXT

FRESHLINE

NEWLINE

PRINTLN "Now we continue with a blank line between"

See Also

FRESHLINE Statement, NEWLINES Statement

The PPL Development Kit 205

Chapter 7 PPL Reference

NEWLINES Statement

Function

Ехесше a specified number of NEWLINE statements.

Syntax

NEWLINES count

count An integer expression with the number of times to execute NEWLINE.

Remarks

This statement is convienient when executing multiple and/or variable NEWLINE statements

for screen formatting. It takes a single integer expression argument and automatically

executes that many NEWLINE statements for you without the need to set up a loop or to write

multiple NEWLINE lines in your source code.

Examples

INTEGER i, end

LET end - RANDOM(20)
FOR i = 1 TO end

PRINT RIGHT(RANDOM(10000),8)
NEXT

FRESHLINE

NEWLINE 5

PRINTLN "Now we continue with a 5 blank lines between"

See Also

FRESHLINE Statement, NEWLINE Statement

206 The PPL Development Kit

PPL Reference Chapter 7

NEWPWD Statement

Function

Change the users password and maintain the password PSA if installed.

Syntax

NEWPWD pwd, var

pwd A string expression with the new password for the user.

var A variable to hold the password change status. TRUE if the password was

changed or FALSE otherwise.

Remarks

There are two ways to change the users password under PPL control. The first is to simply use

the GETUSER statement, assign the new password to the U PWD variable, then issue the

PUTUSER statement. However, this isn't adequate if the SysOp has installed the password

PSA. This statement will take care of validating the password, checking it against the

password history, updating the password history, setting a new expiration date if necessary and

incrementing the times changed counter. If the password fails a validity test then this

statement will set the var parameter to FALSE to let you know that the password wasn't

changed. If the password PSA isn't installed or if the password conforms to the PSA

requirements, then var will be set to TRUE.

Examples

BOOLEAN changed
STRING рма

INPUTSTR "Enter a new password",pwd,@X0E,12,MASK_PWD() , ECHODOTS

NEWLINE

NEWPWD pwd,changed
IF (!changed) PRINTLN "Password not changed"

See Also

MASK PWDO Function, О PWD Variable, О PWDEXP Variable, U PWDHISTO

Function, U PWDLC(Function, U PWDTCY) Function

The PPL Development Kit 207

Chapter 7

208

PPL Reference

NOCHAR() Function

Function

Get the no response character for the current language.

Syntax

NOCHAR ()

No arguments are required

Return Type & Value

STRING Returns the no character for the current language.

Remarks

Support for foreign language yes/no responses can be easily added by using this function to
determine what a negative response should be instead of hardcoding the english "N" character.

Examples

STRING ans

LET ans = YESCHAR()

INPUTSTR "Run program now",ans,@X0E,1,"",AUTO+YESNO

IF (ans - NOCHAR()) END

See Also

YESCHARO Function, YESNO Constant

The PPL Development Kit

PPL Reference Chapter 7

NOCLEAR Constant

Function

Set the no clear input field flag in ап INPUTSTR or PROMPTSTR statement.

Value

1024 - 10000000000b - 20000 - 400h

Remarks

The INPUTSTR and PROMPTSTR statements have the ability to automatically clear the

default value from the input field when the users presses his first key if ANSI is available.

This is the default mode of operations. If you don't want this to happen, you may use this flag

to disable this feature.

Examples

STRING cmds
LET cmds - "QUIT"

INPUTSTR "Commands",cmds,G8XOE,60,MASK ASCII(),STACKED*«NOCLEAR

TOKENIZE cmds

LET cmds - GETTOKEN()

IF (cmds - "QUIT") END

KBDSTUFF cmds*TOKENSTR()

See Also

INPUTSTR Statement, PROMPTSTR Statement

The PPL Development Kit 209

Chapter 7 PPL Reference

NOT() Function

Function

Calculate the bitwise NOT of an integer argument.

Syntax

NOT (iexp)

iexp Any integer expression.

Return Type & Value

INTEGER Returns the bitwise NOT of iexp.

Remarks

This function may be used to toggle all bits in an integer expression. Wherever a bit had been

set it will be clear after this function call, and vice versa.

Examples

' Toggle the bits

PRINTLN NOT(1248h)
‘ Toggle all flag
INTEGER flag
LET flag - NOT(flag)

See Also

ANDO Function, OR() Function, XOR(Function

210 The PPL Development Kit

PPL Reference Chapter 7

ONLOCAL() Function

Function

Determine whether or not a caller is on locally.

Syntax

ONLOCAL ()

No arguments are required

Return Type & Value

BOOLEAN Returns TRUE if the caller is on locally, FALSE otherwise.

Remarks

There are some features that work differently for local and remote callers, such as file transfers

and modem communications. This function will report to you whether or not a user is logged

on locally and allow you to handle local processing differently than remote processing.

Examples

IF (ONLOCAL()) THEN

PRINTLN "Call back verification cannot be performed for"
PRINTLN “users logged in locally!"
END

ENDIF

CALL "CALLBACK. PPE"

See Also

CALLNUMO Function, LOGGEDON(Q Function, О LOGONSQ Function

The PPL Development Kit 211

Chapter 7

ОРЕМСАР Statement

212

Function

Open the screen capture file.

Syntax

Examples

BOOLEAN ss

LET ss = SHOWSTAT()

SHOWOFF

OPENCAP "CAP"+STRING(PCBNODE()),ocFlag
IF (ocFlag) THEN

DIR "U;NS"

CLOSECAP

KBDSTUFF "FLAG CAP"+STRING (PCBNODE())+CHR(13)

ENDIF

IF (ss) THEN

SHOWON

ELSE

SHOWOFF

ENDIF

See Also

CLOSECAP Statement, SHOWOFF Statement, SHOWON Statement, SHOWSTATO

Function

PPL Reference

OPENCAP file,stat

file A string expression with the file name to open.

stat A variable to hold the return status (TRUE if error opening file, FALSE
otherwise).

Remarks

PCBoard has the ability to capture screen output to a file for later reference. PPL allows that

same ability via the OPENCAP and CLOSECAP statements.

program that executes a series of commands in non-stop mode. The process could open a

capture file first, execute the commands, close the capture file, then allow the user to view or

download the capture file. CLOSECAP closes the capture file and turns off screen capturing.

Also, the SHOWON and SHOWOFF statements can be used to turn on and off showing
information to the screen while allowing that same information (even if not displayed or

transmitted via modem) to be captured to a file. The SHOWSTATO function can be used to

check the current status of the SHOWON and SHOWOFF statements.

This could be useful in a

The PPL Development Kit

PPL Reference Chapter 7

OPTEXT Statement

Function

Set the text to be used by the @OPTEXT@ macro.

Syntax

OPTEXT str

str Any string expression.

Remarks

The @OPTEXT@ macro is used to include operation specific text in prompts and display

files. Normally PCBoard automatically fills it in with the appropriate value. However. vou

can use it for your own purposes by issuing this statement to set the text and immediately

displaying the information that should use it (by either printing a line or displaying a file).

Examples

ОРТЕХТ STRING(DATE())*" & "«STRING(TIME())
PRINTLN "The date and time are @OPTEXT@"
DISPFILE "FILE",GRAPH-«SEC-«LANG

See Also

DISPFILE Statement, DISPSTR Statement, DISPTEXT Statement, PRINT/PRINTLN

Statements

The PPL Development Kit 213

Chapter 7 PPL Reference

OR() Function

Function

Calculate the bitwise OR of two integer arguments.

Syntax

OR (іехр1,іехр2)

іехрі Any integer expression.

iexp2 Any integer expression.

Return Type & Value

INTEGER Returns the bitwise OR of iexp1 and iexp2.

Remarks

This function may be used to set selected bits in an integer expression by ORing the expression

with a mask that has the bits to set set to 1 and the bits to ignore set to 0.

Examples

' Set the bits in the low byte

PRINTLN OR(1248h, 00FFh)
' Randomly set a flag the hard way
INTEGER flag
LET flag - OR(RANDOM(1),RANDOM(1))

See Also

ANDO Function, МОТО Function, XOR() Function

214 The PPL Development Kit

PPL Reference Chapter 7

O RD Constant

Function

Set the open for read access flag ina FCREATE/FOPEN/FAPPEND statement.

Value

0 = 06 = Оо = Oh

Remarks

Files тау be opened for read, write or combined read/write access. You should only use the

access you need to allow other processes to open files at the same time in multitasking and

networked environments. This constant will allow your PPE to read from a file without

writing any information out to it.

Examples

FOPEN 1,"FILE.DAT",O RD,S DN ' Open for read access

FOR i - 1 TO 10
ЕСЕТ 1,5
РКІМТІМ 5

МЕХТ

FCLOSE 1

See Also

O RW Constant, O WR Constant

tu Һ- A The PPL Development Kit

Chapter 7 PPL Reference

O RW Constant

Function

Set the open for read and write access flag ina FCREATE/FOPEN/FAPPEND statement.

Value

2=10b=20=2h

Remarks

Files may be opened for read, write or combined read/write access. You should only use the

access you need to allow other processes to open files at the same time in multitasking and
networked environments. This constant will allow your PPE to both read from and write to a

file without the need to close and reopen it between accesses.

Examples

FOPEN 1,"FILE.DAT",O_RW,S_DN ' Open for read and write access
FOR i- 1 TO 10

ЕРОТ 1,"X"

ЕСЕТ 1,5

PRINTLN s

NEXT

FCLOSE 1

See Also

O RD Constant, O WR Constant

216 The PPL Development Kit

PPL Reference Chapter 7

О WR Constant

Function

Set the open for write access flag ina FCREATE/FOPEN/FAPPEND statement.

Value

1=1b=lo=lh

Remarks

Files may be opened for read, write or combined read/write access. You should only use the

access you need to allow other processes to open files at the same time in multitasking and

networked environments. This constant will allow your PPE to write to a file but will restrict

read access.

Examples

FOPEN 1,"FILE.DAT",O WR,S DN ' Open for write access
FOR i = 1 TO 10

FPUTLN 1,"Line ",i

NEXT

FCLOSE 1

See Also

O RD Constant, O RW Constant

The PPL Development Kit 217

Chapter 7 PPL Reference

PAGEOFF Statement

Function

Turn off the SysOp paged indicator.

Syntax

PAGEOFF

No arguments are required

Remarks

One of the features of PCBoard where change is often requested is the operator page facility.
Some people want to be able to configure multiple ranges of availability per day, some want a

different sounding page bell, longer or shorter page attempts, etc, etc. This statement, along

with the CHAT and PAGEON statements and the PAGESTATO function, allow you to

implement an operator page in any way desired.

Examples

PAGEON

FOR i = 1 TO 10

PRINT "GBEEPQ"

DELAY 18

IF (KINKEY() - " ") THEN

PAGEOFF

SHELL TRUE,i,"SUPERCHT",""

GOTO exit

ENDIF

NEXT

:exit

See Also

CHAT Statement, PAGEON Statement, PAGESTAT() Function

218 The PPL Development Kit

PPL Reference Chapter 7

PAGEON Statement

Function

Turn on the SysOp paged indicator and update user statistics.

Syntax

PAGEON

No arguments are required

Remarks

One of the features of PCBoard where change is often requested is the operator page facility.

Some people want to be able to configure multiple ranges of availability per day. some want a

different sounding page bell, longer or shorter page attempts. сіс. etc. This statement. along

with the CHAT and PAGEOFF statements and the PAGESTATY() function. allow vou to

implement an operator page in any way desired. Note that this statement will also update the

current callers statistics PSA if it is installed.

Examples

PAGEON
FOR i - 1 TO 10

PRINT "@BEEPG"

DELAY 18

IF (KINKEY() - " ") THEN

CHAT

GOTO exit

ENDIF

NEXT
:exit

See Also

CHAT Statement, PAGEOFF Statement, PAGESTATO Function

The PPL Development Kit 219

Chapter 7 PPL Reference

PAGESTAT() Function

Function

Determine if the current user has paged the SysOp.

Syntax

PAGESTAT ()

No arguments are required

Return Type and Value

BOOLEAN Returns TRUE if the user has paged the SysOp, FALSE otherwise.

Remarks

One of the features of PCBoard where change is often requested is the operator page facility.
Some people want to be able to configure multiple ranges of availability per day, some want a
different sounding page bell, longer or shorter page attempts, etc, etc. This function, along

with the CHAT, PAGEON and PAGEOFF statements, allow you to implement an operator

page in any way desired.

Examples

IF (РАСЕЗТАТ()) THEN

PRINTLN "You have already paged the SysOp,"
PRINTLN "please be patient."

ELSE

PAGEON

PRINTLN "The SysOp has been paged, continue"
ENDIF

See Also

CHAT Statement, PAGEOFF Statement, PAGEON Statement

220 The PPL Development Kit

PPL Reference Chapter 7

PCBDAT() Function

Function

Return the path and file name of the PCBOARD.DAT file.

Syntax

PCBDAT ()

No arguments are required

Return Type & Value

STRING Returns the path and file name of the PCBOARD.DAT file for the currnet

node.

Remarks

The PCBOARD.DAT file is the master confiuration file for each node running PCBoard. As

such, there are many useful pieces of information that can be obtained from it. It is a standard

text file with one piece of information per line. You may use the READLINE(function to

read individual pieces of information from it.

Examples

STRING s
LET s = READLINE(PCBDAT(),1)
PRINTLN "PCBOARD.DAT version info - ",s

See Also

GETENVO Function, READLINEO Function

The PPL Development Kit 221

Chapter 7 PPL Reference

PCBNODE() Function

Function

Return the current node number.

Syntax

PCBNODE ()

No arguments are required

Return Type & Value

INTEGER Returns the node number for the current node.

Remarks

You may have need to know what node is in use for certain applications (for example, to

create temporary files with unique names or to restrict features to a particular node or nodes).

This function will return a number from 1 to the maximum number of nodes allowed with a
given copy of PCBoard. Note that the node number may not be what is defined in

PCBOARD.DAT if the /FLOAT or /NODE switches are used.

Examples

STRING file

LET file = "TMP"+STRING (PCBNODE())+".$$$"
DELETE file

See Also

MAXNODEO Function

222 The PPL Development Kit

PPL Reference Chapter 7

PEEKB() Function

Function

Return the value of a byte at a specified memory address.

Syntax

PEEKB (addr)

addr An integer expression with the address of the byte to peek.

Return Type & Value

INTEGER Returns the value of the byte at addr.

Remarks

It is sometimes necessary to read values from memory directly (for example, from the system

BIOS data segment). This function will return a byte quantity (0-255) from a specified

memory address.

Examples

PRINTLN "The current video mode is ", PEEKB(MKADDR(40h, 49h))

See Also

MKADDRO Function, PEEKDW() Function, PEEKW() Function, РОКЕВО Function,

POKEDWO Function, POKEWO Function, VARADDR Statement, VAROFF Statement,

VARSEG Statement

The PPL Development Kit 223

Chapter 7

224

PPL Reference

PEEKDW() Function

Function

Return the value of a double word at a specified memory address.

Syntax

PEEKDW (addr)

addr An integer expression with the address of the double word to peek.

Return Type & Value

INTEGER Returns the value of the double word at addr.

Remarks

It is sometimes necessary to read values from memory directly (for example, from the system

BIOS data segment). This function will return a double word quantity as a signed integer

(-2, 147,483,648 - +2, 147,483,647) from a specified memory address.

Examples

PRINTLN "Timer ticks since midnight = ", PEEKDW(MKADDR (40h, 6Ch))

See Also

MKADDRO Function, РЕЕКВ() Function, PEEKW() Function, POKEBO Function,

POKEDWO Function, POKEW(Function, VARADDR Statement, VAROFF Statement,

VARSEG Statement

The PPL Development Kit

PEEKW() Function

Function

Return the value of a word at a specified memory address.

Syntax

PEEKW (addr)

addr An integer expression with the address of the word to peek.

Return Type & Value

INTEGER Returns the value of the word at addr.

Remarks

It is sometimes necessary to read values from memory directly (for example, from the system

BIOS data segment). This function will return a word quantity (0-65,535) from a specified

memory address.

Examples

PRINTLN "The usable memory size is ”, PEEKW(MKADDR(40h, 13h))

See Also

MKADDRO Function, PEEKB() Function, PEEKDW(Function, POKEBQ Function,

POKEDWO Function, POKEW() Function, VARADDR Statement, VAROFF Statement,

VARSEG Statement

The PPL Development Kit 225

Chapter 7

226

PPL Reference

POKEB Statement

Function

Write a byte to a specified memory address.

Syntax

POKEB addr,value

addr An integer expression with the address to write to.

value An integer expression with the value to write to addr.

Remarks

You may have need to write directly to memory from time to time. This statement

complements the PEEKBY() function and allows you to write a byte value (0-255) to a specific

memory location.

Examples

BOOLEAN flag
INTEGER addr

VARADDR flag,addr

POKEB addr,TRUE ' Set the flag to TRUE the hard way

See Also

MKADDRO Function, PEEKBO Function, PEEKDW() Function, PEEKWO Function,

POKEDWO Function, POKEWQ Function, VARADDR Statement, VAROFF Statement,

VARSEG Statement

The PPL Development Kit

PPL Reference Chapter 7

POKEDW Statement

Function

Write a double word to a specified memory address.

Syntax

POKEDW addr,value

addr An integer expression with the address to write to.

value An integer expression with the value to write to addr.

Remarks

You may have need to write directly to memory from time to time. This statement

complements the PEEKDWO function and allows you to write a double word value

(-2,147,483,648 - +2,147,483,647) to a specific memory location.

Examples

MONEY amt
INTEGER addr

VARADDR amt,addr
POKEDW addr,123456 ' Set amt to $1234.56 the hard мау

See Also

MKADDRO Function, PEEKB() Function, PEEKDW() Function, PEEKWO Function,

РОКЕВ(Function, POKEW(Function, VARADDR Statement, VAROFF Statement,

VARSEG Statement

The PPL Development Kit 227

Chapter 7

228

PPL Reference

POKEW Statement

Function

Write a word to a specified memory address.

Syntax

POKEW addr, value

addr An integer expression with the address to write to.

value An integer expression with the value to write to addr.

Remarks

You may have need to write directly to memory from time to time. This statement

complements the PEEKWO function and allows you to write a word value (0-65,535) to a

specific memory location.

Examples

DATE dob

INTEGER addr

VARADDR dob,addr
POKEW addr,MKDATE(1967,10,31) ' Set dob the hard way

See Also

MKADDRO Function, PEEKB() Function, PEEKDW() Function, PEEKWQ Function,

РОКЕВ() Function, POKEDWO Function, VARADDR Statement, VAROFF Statement,

VARSEG Statement

The PPL Development Kit

PPL Reference Chapter 7

POP Statement

Function

Pop the results of one or more expressions from a stack.

Syntax

POP уаг(,маг|

var A variable of any type in which to retrieve previously pushed expression.

Remarks

This statement will retrieve the results of one or more expressions of any type from a stack into

a list of variables. The values should have been previously pushed with the PUSH statement.

Together PUSH and POP can be used for parameter passing, to create ‘local’ variables. or to

reverse the order of arguments.

Examples

INTEGER i, tc

STRING 5

LET tc = TOKCOUNT()

WHILE (TOKCOUNT() > 0) PUSH GETTOKEN() ' push them in order
FOR i = 1 TO tc

POP в ' pop them in reverse
PRINTLN s

NEXT

INTEGER i

FOR i = 1 TO 10

PRINT i," - "

GOSUB sub
NEXT

END

:sub
PUSH i ' temporarily save i

LET i = i*i
PRINTLN i

POP i ' restore saved i
RETURN

INTEGER v

PRINT "A cube with dimensions 2X3X4"
PUSH 2,3,4 ‘ pass pushed parameters

GOSUB vol

POP v ' pop result

PRINTLN "has volume ",v
END

: vol
INTEGER w,h,d

POP d,h,w ' pop passed parameter

PUSH w*h*d ' push result
RETURN

The PPL Development Kit 229

Chapter 7 PPL Reference

See Also

PUSH Statement

230 The PPL Development Kit

PPL Reference Chapter 7

PPENAME() Function

Function

Return the base name of an executing PPE file.

Syntax

РРЕМАМЕ()

No arguments are required

Return Type & Value

STRING Returns the base file name (without path or extension) of the currently

executing PPE.

Remarks

This function will return the name of the PPE file that is running. This can be useful when

writing PPL applications that will use data files that you would like to keep named the same as

the parent application regardless of what the PPE name may change to.

Examples

STRING s

FOPEN 1, РРЕРАТН ()+PPENAME()+".CFG",O_RD,S_DN

ЕСЕТ 1,5

FCLOSE 1

See Also

PPEPATHO Function

The PPL Development Kit 231

Chapter 7 PPL Reference

PPEPATH() Function

Function

Return the path of an executing PPE file.

Syntax

PPEPATH ()

No arguments are required

Return Type & Value

STRING Returns the path (without file name or extension) of the currently

executing PPE.

Remarks

This function will return the path of the PPE file that is running. This can be useful when

writing PPL applications that will use files that you would like to keep in the same location as

the parent application regardless of where the PPE may be installed.

Examples

STRING s

FOPEN 1, PPEPATH()+PPENAME()+".CFG",O_RD, S_DN

ЕСЕТ 1,5

FCLOSE 1

See Also

HELPPATH(Function, PPENAME(Function, SLPATHQ Function, TEMPPATHO

Function

232 The PPL Development Kit

PPL Reference Chapter 7

PRINT/PRINTLN Statements

Function

Print (write) a line to the screen (with an optional newline appended).

Syntax

PRINT exp[,exp]

PRINTLN [exp[,exp)]

exp An expression of any type to evaluate and write to the screen.

Remarks

These statements will evalutate zero, one or more expressions of any type and write the results

to the display. The PRINTLN statement will append a newline to the end of the expressions;

PRINT will not. Note that at least one expression must be specified for PRINT, unlike the

PRINTLN statement which need not have any arguments passed to it. Finally. both

statements will process all @ codes and display them as expected.

Examples

PRINT "The name of the currently running PPE file is "
PRINTLN PPENAME(),"."

PRINT "The path where it is located is "
PRINTLN PPEPATH(),"."

PRINT "The date is ",DATE()," and the time is ",TIME(),"."

PRINTLN

PRINT "ФХІРТҺІв is bright white on blue..."
PRINTLN "how do you like it @FIRST@"

See Also

MPRINT/MPRINTLN Statements, OPTEXT Statement, SPRINT/SPRINTLN Stazements

The PPL Development Kit 233

Chapter 7

234

PPL Reference

PROMPTSTR Statement

Function

Prompt the user for a string of text in a specific format.

Syntax

PROMPTSTR prompt, var,len,valid, flags

prompt An integer expression with the prompt number from PCBTEXT to display

to the user.

var The variable in which to store the user's input.

len An integer expression with maximum length of text to input.

valid A string expression with the valid characters that the user may enter.

flags An integer expression with flags to modify how the statement works.

Remarks

This statement will accept a string of input from the user, up to the length defined. The

prompt parameter will be used to find the prompt from PCBTEXT (which includes the prompt
color) to display to the user. Only characters found in the valid parameter will be accepted.

However, the flags parameter may affect how prompt is displayed and the valid characters that

are accepted. Individual flags may be added together as needed. Several functions exist to

easily specify commonly used valid character masks. They are MASK_ALNUMO,

MASK_ALPHAQ, MASK ASCIIQ, MASK FILEQ, MASK_NUMO, МАЅК РАТНО),

and MASK PWDÓ. Defined flag values are AUTO, DEFS, ECHODOTS, ERASELINE,

FIELDLEN, GUIDE, HIGHASCII, LFAFTER, LFBEFORE, NEWLINE, NOCLEAR,
STACKED, UPCASE, WORDWRAP, and YESNO.

Examples

BOOLEAN b

DATE d

INTEGER i

MONEY m

STRING 5

TIME t

' NOTE: prompt 706 is used here for all statements;
' you may use any prompt you wish

PROMPTSTR 706,b,1,"10",LFBEFORE*NEWLINE

PROMPTSTR 706,d4,8, °0123456789-", NEWLINE+NOCLEAR

PROMPTSTR 706,1,20,MASK NUM(),NEWLINE

PROMPTSTR 706,m,9,MASK_NUM()+".", NEWLINE+DEFS+FIELDLEN

PROMPTSTR 706,8,63,MASK_ASCII() , NEWLINE+FIELDLEN+GUIDE

PROMPTSTR 706,t,5,"0123456789"4";",NEWLINE*LFAFTER

PRINTLN b," ",d," ",i

PRINTLN m," ",s," ",t

The PPL Development Kit

PPL Reference Chapter 7

See Also

INPUT Statement, INPUT... Statements, INPUTSTR Statement, INPUTTEXT Statement

“” Тһе PPL Development Kit 23

Chapter 7

PSA() Function

Function

Determine whether or not a given PSA is installed.

PPL Reference

An integer expression with the number of the PSA to check for the

Returns TRUE if the specified PSA exists or FALSE if it doesn't exist for

Syntax

PSA (num)

num

existence of.

Return Type & Value

BOOLEAN

the following values of num:

1 The Alias PSA;

2 The Verification PSA.

3 The Address PSA;

4 The Password PSA;

5 The Statistics PSA.

6 The Notes PSA.

Remarks

This function allows you to determine whether or not a given PCBoard Supported Allocation

(PSA) is installed. For each of the six PSAs it will return TRUE if installed or FALSE if not

installed. It is useful when you want to write a generic PPL application that will access one or

more PSAs that may or may not be installed.

Examples

STRING ynStr(1)
LET ynStr(0) - "NO"
LET ynStr(1) - "YES"

PRINTLN " Alias

PRINTLN "Verification

PRINTLN " Address

PRINTLN " Password

PRINTLN " Statistics

PRINTLN " Notes

See Also

VERO Function

236

Support

Support

Support

Support

Support

Support

Enabled?

Enabled?

Enabled?

Enabled?

Enabled?

Enabled?

",ynStr(PSA(1))
", ynStr(PSA(2))

",ynStr(PSA(3))
",ynStr(PSA(4))
", ynStr(PSA(5))

",ynStr (PSA(6))

The PPL Development Kit

PPL Reference Chapter 7

PUSH Statement

Function

Push (save) the results of one or more expressions on a stack.

Syntax

PUSH exp[,exp]

exp An expression of any type to evaluate and push.

Remarks

This statement will evalutate one or more expressions of any type and push the results onto a

stack for temporary storage. The results of those expressions may be retrieved via the POP

statement. Together PUSH and POP сап be used for parameter passing, to create ‘local’

variables, or to reverse the order of arguments.

Examples

INTEGER i, tc
STRING 5
LET tc = TOKCOUNT()
WHILE (TOKCOUNT() > 0) PUSH GETTOKEN()
FOR i = 1 TO te

POP s
PRINTLN s

NEXT

INTEGER i

FOR i = 1 TO 10

PRINT i," - "

GOSUB sub

NEXT

END

:sub
PUSH i

LET i = iti

PRINTLN i

POP i

RETURN

INTEGER v

PRINT "A cube with dimensions 2Х3Х4"

PUSH 2,3,4

GOSUB vol
POP v

PRINTLN “has volume ",v
END

:vol
INTEGER w,h,d

РОР d,h,w

PUSH w*h*d

RETURN

The PPL Development Kit

push them in order

' pop them in reverse

temporarily save i

restore saved i

pass pushed parameters

pop result

" pop passed parameter

' push result

237

Chapter 7 PPL Reference

See Also

POP Statement

238 The PPL Development Kit

PPL Reference Chapter 7

PUTUSER Statement

Function

Copy values from predeclared variables to user record.

Syntax

PUTUSER

No arguments are required

Remarks

There are many predeclared variables which may be used to access and change user

information. However, their values are undefined until you use the GETUSER statement. and

any changes you make don't take hold until you use the PUTUSER statement.

Examples

IF (PSA(3)) THEN
GETUSER
INPUT "Addr 1",U_ADDR(0)
INPUT "Addr 2",U_ADDR(1)
INPUT "City ",U ADDR(2)

INPUT "State ",U, ADDR(3)
INPUT "ZIP ",U_ADDR (4)

INPUT "Cntry ",U, ADDR(5)

PUTUSER

ENDIF

See Also

GETUSER Statement

The PPL Development Kit 239

Chapter 7 PPL Reference

QUEST Statement

Function

Allow the user to answer a specified script questionnaire.

Syntax

QUEST scrnum

scrnum The number of the script for the user to answer. Valid values are 1

through the number of script questionnaires available.

Remarks

This statement will present the user a specified script questionnaire number to answer. The

SCR.LST file for the current conference will be searched for the script. If the questionnaire
number is invalid (less than 1 or greater than the highest script number defined) then nothing
will be displayed.

Examples

INTEGER num
INPUT "Script to answer",num

QUEST num

See Also

BLT Statement, DIR Statement, JOIN Statement

240 The PPL Development Kit

PPL Reference Chapter 7

RANDOM() Function

Function

Return a random value between 0 and a specified limit.

Syntax

RANDOM (limit)

limit An integer expression with the maximum random value desired.

Return Type & Value

INTEGER Returns the random number in the range 0 to limit.

Remarks

Random numbers have many applications from statistics to video games. This function allows

you to generate pseudo-random numbers in the range 0 to limit inclusive.

Examples

INTEGER x,y
WHILE (KINKEY() <> " ") DO

CLS

LET x = 1+RANDOM(50)

LET y = 1+RANDOM(22)
COLOR 1+RANDOM(14)

ANSIPOS x,y
PRINT "Hit the SPACE BAR to continue”
DELAY 18

ANSIPOS x,y

CLREOL

ENDWHILE

See Also

ABSO Function

The PPL Development Kit 241

Chapter 7

242

PPL Reference

RDUNET Statement

Function

Read information from the USERNET file for a specific node.

Syntax

RDUNET node

node An integer expression with the node to read.

Remarks

To facilitate internode communications, a file named USERNET.XXX is maintained with an

entry for each node on the system. This file is used by the BROADCAST command of

PCBoard and to prevent multiple simultaneous logins, among other things. This statement

may be used to read information for any node.

Examples

RDUNET PCBNODE()
WRUNET PCBNODE(),UN, STAT(),UN NAME(),UN, CITY(),"Running "*PPENAME(),""

RDUNET 1

WRUNET 1,0М STAT(),UN NAME(),UN CITY(),UN ОРЕК (), "Hello there node 1"

See Also

BROADCAST Statement, UN ...() Functions, RDUNET Statement

The PPL Development Kit

PPL Reference Chapter 7

RDUSYS Statement

Function

Read a USERS.SYS file in from disk.

Syntax

RDUSYS

No arguments are required

Remarks

Some DOOR applications require a USERS.SYS file to access information about the caller.

This statement allows you to read the USERS.SYS file back into memory in case any changes

were made by the DOOR during the SHELL statement. This statement should only be used

after a SHELL statement that was preceeded by a WRUSYS statement.

Examples

INTEGER ret

WRUSYS
SHELL FALSE,ret,"MYAPP.EXE",""

RDUSYS

See Also

SHELL Statement, WRUSYS Statement

The PPL Development Kit 243

Chapter 7 PPL Reference

READLINE() Function

Function

Read a specific line number from a text file.

Syntax

READLINE (file, line)

file A string expression with the file name to read from.

line An integer expression with the line number to read.

Return Type & Value

STRING Returns the specified line number from file.

Remarks

It is often convienient to read a specified line number from a file without going to all the

overhead of opening, reading and closing. This function will open the file in read mode for

share deny none access and quickly read up to the line number you specify. If the line you

want doesn't exist an empty string will be returned. Additionally, this function will remember

the last file and line read so that it may quickly continue where it left off if you try to read a

number of lines sequentially from the same file. Finally, the last file specified will remain

open until the PPE exits and returns control to PCBoard.

Examples

PRINTLN "This system is running on IRQ ",READLINE(PCBDAT(),158)

PRINTLN "with a base IO address of ",READLINE(PCBDAT(),159)

See Also

DELETE Statement, EXIST) Function, FILEINF() Function, RENAME Statement

244 The PPL Development Kit

PPL Reference Chapter 7

REG...() Functions

Function

Get the value of a register.

Syntax

REG... ()

No arguments are required

REG should be followed by one of the following register names: AH, AL. AX, BH. BL. BX.

CF, CH, CL, CX, DH, DI, DL, DS, DX, ES, F or SI.

Return Type & Value

BOOLEAN (REGCFO only) Returns TRUE if the carry flag is set, FALSE otherwise.

INTEGER (All others) Returns the value of the specified register.

Remarks

There are actually 18 different functions that return the values of registers. AL. AH. BL. BH.

CL, СН, DL, and DH will always return byte sized values (0-255). AX. BX, CX. DX. DI. SI.

DS, and ES will always return word sized values (0-65535). F (flags) returns the settings for

the various 80x86 processor flags. CF is a subset of F in that it only returns the status of the

carry flag. It exists because the carry flag is often used to report success or failure in assembly

language. The REGF() function returns the settings for the following flags: Carry. Parity.

Auxilliary, Zero, Sign, Trap, Interrupt, Direction, and Overflow. Their bit values are as

follows:

геге рерге
iom «von | зоок [xoc овон [osos [oon отон [oos отан оог | ооа

The PPL Development Kit 245

Chapter 7 PPL Reference

Examples

‘ Create subdirectory - DOS function 39h
INTEGER addr

STRING path
LET path = "C:\$TMPDIR$"

VARADDR path, addr
DOINTR 21h,39h,0,0,addr%00010000h, 0,0,0,addr/00010000h,0
IF (REGCF() & (REGAX() = 3)) THEN

PRINTLN "Error: Path not found"

ELSE IF (REGCF() & (REGAX() = 5)) THEN

PRINTLN "Error: Access Denied"
ELSE IF (REGCF()) THEN

PRINTLN "Error: Unknown Error"
ELSE

PRINTLN "Directory successfully created...”

ENDIF

See Also

DOINTR Statement

246 The PPL Development Kit

PPL Reference Chapter 7

RENAME Statement

Function

Rename (or move) a file.

Syntax

RENAME old,new

old

new

Remarks

A string expression with the old path and/or file name.

A string expression with the new path and/or file name.

Similar to how the RENAME command works from the DOS prompt, this statement will take

a file and give it a new name. Unlike the RENAME command, the RENAME statement will

not accept wildcards in the old or new parameters. Also, it doesn't require that the old path

and the new path be the same (the drive letters must match, but the paths need not). so it may

be used to move files from one location to another on a single drive. So, you could use it to

move a file from C:\PCB\NODE]1 to C:\PCB\NODE2 (renaming it at the same time if you

wish), but you couldn't use it to move a file from C:\PCB\NODE]I to D:\WORK\NODE 1.

Examples

Swap

See Also

the PCBOARD DAT & NXT files

"PCBOARD.DAT","PCBOARD.TMP"
"PCBOARD.NXT","PCBOARD.DAT"
"PCBOARD.TMP","PCBOARD.NXT^

the file to the backup directory
"PPE.LOG", "LOGBAK\"+I2S (DATE() *86400+TIME(),36)

DELETE Statement, EXISTQ Function, FILEINF() Function, READLINE() Function

The PPL Development Kit 247

Chapter 7 PPL Reference

REPLACE() Function

Function

Change all occurences of a given character to another character in a string.

Syntax

REPLACE (str,old,new)

str Any string expression.

old A string expression with the old character to be replaced.

new A string expression with the new character to replace with.

Return Type & Value

STRING Returns str with all occurences of old changed to new.

Remarks

This function will search a string for a given character and replace all instances of that

character with another character. This can be useful in many scenarios, especially when

formatting text for display purposes.

Examples

PRINTLN "Your internet address on this system is:”

PRINTLN REPLACE (LOWER (U_NAME())," ","."), "@clarkdev.com"

See Also

ӚТКІР() Function, STRIPATX() Function

248 The PPL Development Kit

PPL Reference Chapter 7

RESETDISP Statement

Function

Reset the display to allow more information after an abort.

Syntax

RESETDISP

No arguments are required

Remarks

PCBoard normally automatically counts lines and, if enabled, pauses the display after every

screenful. The user may (unless disabled) abort the display at any MORE? prompt or with the

^K/^X keys. If this happens no further information will be displayed until you use the

RESETDISP statement. You can check to see if RESETDISP is necessary (ie, has the user

aborted the display) with the ABORTO function.

Examples

INTEGER I

STARTDISP FCL

' While the user has not aborted, continue
WHILE (!ABORT()) DO

PRINTLN "I is equal to ",I
INC I

ENDWHILE

RESETDISP

See Also

ABORTO Function, STARTDISP Statement

The PPL Development Kit 249

Chapter 7 PPL Reference

RESTSCRN Statement

Function

Restore the screen from a previously saved buffer.

Syntax

RESTSCRN

No arguments are required

Remark

PCBoard will save and restore the screen before and after certain functions, such as SysOp
chat. This allows the user to continue nght where he left off without having to remember what
was on the screen before being interrupted. You can add that same functionality with the

SAVESCRN and RESTSCRN statements. The SAVESCRN statement allocates memory for

a buffer in which to save the screen. If the SAVESCRN statement isn't followed by a

RESTSCRN statement then that memory will never be deallocated. Finally, this statement
will work regardless of ANSI availability; the screen is only saved up to the position of the

cursor and this statement assumes that it can safely restore the screen using standard teletype

conventions to just scroll the data onto the display.

Examples

SAVESCRN

CLS

PRINTLN "We interrupt your regular BBS session"
PRINTLN "with this important message:"
NEWLINE

PRINTLN "A subscription to this system only costs $5!"
PRINTLN "Subscribe today!"
NEWLINES 2

WAIT

RESTSCRN

See Also

SAVESCRN Statement

250 The PPL Development Kit

PPL Reference Chapter 7

RETURN Statement

Function

Transfer program control back to a previously saved address.

Syntax

RETURN

No arguments are required

Remarks

It is often necessary to perform an indentical set of instructions several times in a program.
This leaves you with two choices. One, rewrite the code several times (and hope you do it

right each time), or two, write it once as a subroutine, then use GOSUB to run it. This

statement will save the address of the next line so that a RETURN statement at the end of the

subroutine can instruct PPL to resume execution with the line following the GOSUB.

Examples

STRING Question, Answer
LET Question = "What is your street address ..."
GOSUB ask
LET Question - "What is your city, state and zip ..."
GOSUB ask
END

:ask ' Sub to ask a question, get an answer, and log them to a file
LET Answer - ""

PRINTLN "QGXOE",Question
INPUT "",Answer

NEWLINES 2

FPUTLN 0,"Q: ",STRIPATX(Question)

FPUTLN 0, "А: ",Answer

RETURN

See Also

END Statement, GOSUB Statement, GOTO Statement, FOR/NEXT Statement,

IF/ELSEIF/ELSE/ENDIF Statement, STOP Statement, WHILE/ENDWHILE Statement

The PPL Development Kit 251

Chapter 7 PPL Reference

RIGHT() Function

Function

Access the right most characters from a string.

Syntax

RIGHT (str, chars)

str A string expression to take the right most characters of.

chars An integer expression with the number of characters to take from the right

end of str.

Return Type & Value

STRING Returns a string with the right most chars characters of str.

Remarks

This function will return a sub string with the nght most chars characters of a specified string.

This can be useful in data processing as well as text formatting. If chars is less than or equal

to 0 then the returned string will be empty. If chars is greater than the length of str then the

returned string will have spaces added to the right to pad it out to the full length specified.

Examples

WHILE (RANDOM(250) «» 0) PRINT RIGHT(RANDOM(250),4)," "

STRING s
FOPEN 1,"DATA.TXT",O Юр,5 DN
WHILE (!FERR(1)) DO

ЕСЕТ 1,5
PRINT RTRIM(LEFT(s,25)," ")," - "
PRINTLN RIGHT (s, LEN(s)-25)

ENDWHILE
FCLOSE 1

See Also

LEFTO Function, MIDO Function

252 The PPL Development Kit

PPL Reference Chapter 7

RTRIM() Function

Function

Trim a specified character from the right end of a string.

Syntax

RTRIM(str,ch)

str Any string expression.

ch A string with the character to strip from the right end of str.

Return Type & Value

STRING Returns the trimmed str.

Remarks

А common need in programming is to strip leading and/or trailing spaces (or other

characters). This function will strip a specified character from the right end of a string and

return the trimmed string.

Examples

STRING s

LET s = " TEST

PRINTLN RTRIM(s," ") ' Will print " TEST"

PRINTLN RTRIM("..... рА"+"ТА..... "7,",") " Will print "..... DATA"

PRINTLN RTRIM("..... DA"*"TA..... "n," n) " Will print "..... DATA..... "

See Also

LTRIMO Function, TRIMO Function

The PPL Development Kit 233

Chapter 7 PPL Reference

62(() Function

Function

Convert a string in a specified number base to an integer.

Syntax

S2I (str, base)

str Any string expression to convert to integer format.

base An integer expression with the number base (2 through 36) to convert

from.

Return Type & Value

INTEGER Returns str converted from the specified number base to an integer.

Remarks

People work with decimal (base 10) numbers, whereas computers work with binary (base 2)

numbers. However, it is often more convienient to store or input numbers in a format other

than decimal for clarity, compactness, or other reasons. This function will convert a string in

any number base from 2 to 36 to a number. So, S21("1010",2) would return а 10;

S21("Z",36) would return 35.

Examples

INTEGER i
STRING 5

INPUTTEXT "Enter a string (any base)",s,QXOE,40
FOR i - 2 TO 36

PRINTLN s," = ",S2I(8,i1)," base ",i

NEXT

See Also

1250 Function

254 The PPL Development Kit

PPL Reference Chapter 7

SAVESCRN Statement

Function

Save the screen to a buffer for later restoration.

Syntax

SAVESCRN

No arguments are required

Remark

PCBoard will save and restore the screen before and after certain functions, such as SysOp

chat. This allows the user to continue right where he left off without having to remember what
was on the screen before being interrupted. You can add that same functionality with the

SAVESCRN and RESTSCRN statements. The SAVESCRN statement allocates memory for

a buffer in which to save the screen. If the SAVESCRN statement isn't followed by a

RESTSCRN statement then that memory will never be deallocated. Finally, this statement

will work regardless of ANSI availability; this statement will only save the screen up to the
position of the cursor. It is assumed that the screen can be safely restored using standard

teletype conventions to just scroll the data onto the display.

Examples

SAVESCRN

CLS

PRINTLN "We interrupt your regular BBS session"
PRINTLN “with this important message:”

NEWLINE

PRINTLN "А subscription to this system only costs $5!"
PRINTLN "Subscribe today!"
NEWLINES 2

WAIT
RESTSCRN

See Also

RESTSCRN Statement

The PPL Development Kit һә
LI a

Chapter 7 PPL Reference

SCRTEXT() Function

Function

Access text and attribute information directly from BBS screen memory.

Syntax

SCRTEXT (x,y, len, color)

x An integer expression with the x coordinate (column) from which to read

screen memory.

Y An integer expression with the y coordinate (row) from which to read

screen memory.

len An integer expression with the length, in columns, of the string to read
from screen memory.

color A boolean expression with TRUE if color information should be included,

FALSE otherwise.

Return Type & Value

STRING Returns the specified region of screen memory.

Remarks

This function is useful for temporarily saving a portion of screen memory, with or without

color information. If the color parameter is set to TRUE color information will be included in

the form of @X codes embedded in the text. Note that the maximum length of a string is 256

characters; however, a row of 80 characters could be as long as 400 characters (4 bytes for the
(QX code and 1 byte for the character itself). You should generally limit yourself to a length of

51 characters or less if you want to include color information unless you are certain that

attribute changes will not exceed the 256 character string limit.

Examples

' scroll the screen to the left 5 columns and down 3 rows
INTEGER r

STRING s

FOR г - 20 TO 1 STEP -1

LET 5 - SCRTEXT(6,r,75, TRUE)

ANSIPOS 1,r+3
CLREOL

PRINT s

NEXT

FOR г = 1 TO 3

ANSIPOS 1,r

CLREOL

NEXT

256 The PPL Development Kis

PPL Reference Chapter 7

See Also

INSTR(Function, LEN() Function, SPACE() Function, STRING() Function

The PPL Development Kit 257

Chapter 7 PPL Reference

SEC Constant

Function

Set the security level specific file search flag in a DISPFILE statement.

Value

2=10b=20=2h

Remarks

The DISPFILE statement will allow you to display a file to the user, and optionally to have

PCBoard look for alternate security, graphics, and/or language specific files. This flag

instructs PCBoard to search for alternate security level files via the security level suffix. The

current security level may be obtained with the CURSEC(function.

Examples

STRING s

DISPFILE "MNUA", SEC+GRAPH+LANG

INPUT "Option",s

See Also

CURSECO Function, DISPFILE Statement, GRAPH Constant, LANG Constant

258 The PPL Development Kit

PPL Reference Chapter 7

SEC() Function

Function

Extract the second of the minute from a specified time of day.

Syntax

SEC (texp)

texp Any time expression.

Return Type & Value

INTEGER Returns the second of the minute from the specified time expression (texp).

Valid return values are from 0 to 59.

Remarks

This function allows you to extract a particular piece of information about a TIME value. in

this case the second of the minute of the time of day expression.

Examples

PRINTLN "The minute is ",SEC(TIME())

See Also

HOURO Function, MIN() Function, TIME(Function

The PPL Development Kit 259

Chapter 7

260

SENDMODEM Statement

Function

Send a string to the modem.

Syntax

SENDMODEM str

str A string expression to send to the modem.

Remarks

PPL Reference

The primary use of this statement is to send commands to a modem when no one is online.

For example, you would use this to send a dial command to the modem in a call back PPL

application. However, it is not restricted to sending commands. Note that modem commands

must be terminated by a carriage return and that this statement will not automatically do it for

you. This allows you to send a command to the modem is several stages and only terminate

the final stage with a carriage return.

Examples

BOOLEAN flag
CDCHKOFF
KBDCHKOFF
DTROFF
DELAY 18
DTRON
SENDMODEM "ATDT"
SENDMODEM "5551212"
SENDMODEM CHR(13)
WAITFOR "CONNECT", flag, 60
IF (!flag) LOG "No CONNECT after 60 seconds", FALSE

KBDCHKON
CDCHKON

See Also

WAITFOR Statement

The PPL Development Kit

PPL Reference Chapter 7

SHELL Statement

Function

Shell out to a program or batch file.

Syntax

SHELL viacc, retcode, prog, cmds

viacc A boolean expression with value TRUE if the shell should be made via

COMMAND.COM; FALSE if it should be shelled to directly.

retcode A variable in which to store the return code.

prog A string expression with the file name to shell to.

cmds A string expression with any arguments to pass to prog.

Remarks

You may have have need to run a COM, EXE or BAT file from your PPE. You may need to

do this to simulate running a DOOR or to access some service not normally available from

PCBoard or PPL. This function will allow you to do that. If the viacc parameter is TRUE

(you want COMMAND.COM to load the specified file) your PATH environment variable will

be searched for prog if it isn't in the current directory or isn't fully qualified (path and

extension), just as it would be if entered on the command line. If viace is FALSE then you

must specify the path and extension of the program to run. Additionally. the retcode variable

will only be meaningful if viacc is FALSE.

Examples

INTEGER rc

SHELL TRUE,rc,"DOOR",""

INTEGER rc

STRING p.c

LET p - "DOORWAY.EXE"

LET c - "com2 /v:d^O /m:600 /g:on /o: /К:у0 /x: /c:dos"

SHELL PALSE,rc,p,c

See Also

CALL Statement, RDUSYS Statement, WRUSYS Statement

The PPL Development Kit 261

Chapter 7 PPL Reference

SHOWOFF Statement

Function

Turn off showing information to the display.

Syntax

SHOWOFF

No arguments are required

Remark

This statement allows your PPL application to turn off writing information to the local and

remote displays. Used in conjunction with the SHOWSTATO function and the OPENCAP,

CLOSECAP, and SHOWON statements it allows you to temporarily turn off the display

while capturing output to the screen. This can be useful anytime you want to automate a
feature for the user and allow them to download the resulting capture file instead of spending

lots of time online.

Examples

BOOLEAN ss

LET ss = SHOWSTAT()
SHOWOFF
ОРЕМСАР "CAP"«STRING(PCBNODE()),ocFlag
IF (ocFlag) THEN

DIR "U;NS"
CLOSECAP
KBDSTUFF "FLAG CAP“+STRING (PCBNODE())+CHR(13)

ENDIF
IF (ss) THEN

SHOWON
ELSE

SHOWOFP
ENDIF

See Also

CLOSECAP Statement, OPENCAP Statement, SHOWON Statement, SHOWSTATO

Function

262 The PPL Development Kit

PPL Reference Chapter 7

SHOWON Statement

Function

Turn on showing information to the display.

Syntax

SHOWON

No arguments are required

Remark

This statement allows your PPL application to turn on writing information to the local and

remote displays. Used in conjunction with the SHOWSTATO function and the OPENCAP.

CLOSECAP, and SHOWOFF statements it allows you to temporarily turn off the display

while capturing output to the screen. This can be useful anytime you want to automate a

feature for the user and allow them to download the resulting capture file instead of spending

lots of time online.

Examples

BOOLEAN ss

LET ss - SHOWSTAT()

SHOWOFF

OPENCAP "CAP"«STRING(PCBNODE()),ocFlag

IF (ocFlag) THEN
DIR "U;NS"

CLOSECAP
KBDSTUFF "FLAG CAP"+STRING (PCBNODE ()) *CHR (13)

ENDIF

IF (ss) THEN

SHOWON

ELSE

SHOWOFF

ENDIF

See Also

CLOSECAP Statement, OPENCAP Statement, SHOWOFF Statement, SHOWSTATO

Function

The PPL Development Kit 263

Chapter 7 PPL Reference

SHOWSTAT() Function

Function

Determine if data is being shown on the display.

Syntax

SHOWSTAT ()

No arguments are required

Return Type and Value

BOOLEAN Returns TRUE if data is being shown on the display, FALSE otherwise.

Remarks

This function allows your PPL application to determine the status of writing information to the

local and remote displays. Used in conjunction with the OPENCAP, CLOSECAP,

SHOWON, and SHOWOFF statements it allows you to temporarily turn off the display while

capturing output to the screen. This can be useful anytime you want to automate a feature for

the user and allow them to download the resulting capture file instead of spending lots of time

online.

Examples

BOOLEAN ss

LET ss = SHOWSTAT()
SHOWOFF

OPENCAP "CAP"«STRING(PCBNODE()),ocFlag
IF (ocFlag) THEN

DIR "U;NS"
CLOSECAP
KBDSTUFF "FLAG CAP"-«STRING(PCBNODE()) +СНЕ (13)

ENDIF

IF (ss) THEN
SHOWON

ELSE
SHOWOFF

ENDIF

See Also

CLOSECAP Statement, OPENCAP Statement, SHOWOFF Statement, SHOWON

Statement

264 The PPL Development Kit

PPL Reference Chapter 7

SLPATH() Function

Function

Return the path of login security files as defined in PCBSetup.

Syntax

SLPATH ()

No arguments are required

Return Type & Value

STRING Returns the path of the PCBoard login security files.

Remarks

This function will return the path where login security files are located as defined in

PCBSetup. It can be used to create and change them on the fly.

Examples

FAPPEND 1, SLPATH()+STRING (CURSEC) ,O_WR, S_DB
FPUTLN 1,U_NAME()
FCLOSE 1

See Also

HELPPATHO Function, PPEPATHO Function, TEMPPATHO Function

The PPL Development Kit 265

Chapter 7 PPL Reference

SOUND Statement

Function

Turn on the speaker on the local computer at a specific frequency.

Syntax

SOUND freq

freq An integer expression with the frequency (in hertz) at which to turn on the

speaker ог 0 to turn off the speaker.

Remarks

This statement can be used to generate just about any tone desired on the speaker on the local

PC. It has no effect on the remote computer and will only work with the built in speaker (in
other words, it has no way of communicating with advanced sound cards). You specify the

frequency of the tone you wish to generate in hertz and pass it to the statement, or pass 0 to

turn off the speaker.

Examples

PAGEON
FOR i = 1 TO 10

MPRINT CHR(7)

SOUND 440

DELAY 9

SOUND 0

DELAY 9

IF (KINKEY() = " ") THEN

CHAT

GOTO exit
ENDIF

NEXT

:exit

See Also

DELAY Statement

266 The PPL Development Kit

PPL Reference Chapter 7

SPACE() Function

Function

Create a string with a specified of spaces.

Syntax

SPACE (len)

len An integer expression with the number of spaces for the new string.

Return Type & Value

STRING Returns a string of len spaces.

Remarks

This function is useful when formatting screen displays without ANSI and when writing

formatted information out to a file. It will create a string of the length specified with nothing

but spaces. The returned string may have anywhere from 0 to 256 spaces.

Examples

PRINT RANDOM(9),SPACE(5), RANDOM(9) , SPACE (5) , RANDOM (9)

FCREATE 1, "NEWFILE.DAT",O_WR, S_DB
FPUTLN 1, "МАМЕ", ЗРАСЕ(24), "CITY", SPACE(23) , "PHONE"
FCLOSE 1

See Also

INSTR Function, LEN() Function, SCRTEXTO Function, STRINGO Function

The PPL Development Kit 267

Chapter 7 PPL Reference

SPRINT/SPRINTLN Statements

Function

Print (write) a line to the local screen (BBS) only (with an optional newline appended).

Syntax

SPRINT exp[, exp]

SPRINTLN [exp[,exp]]

exp An expression of any type to evaluate and write to the caller's screen.

Remarks

These statements will evalutate zero, one or more expressions of any type and write the results

to the BBS for the SysOp's display. The SPRINTLN statement will append a newline to the

end of the expressions; SPRINT will not. Note that at least one expression must be specified

for SPRINT, unlike the SPRINTLN statement which need not have any arguments passed to

it. These statements only send information to the local display and do not interpret @ codes:

however, complete ANSI sequences will be interpreted.

Examples

SPRINT "The name of the currently running PPE file is "
SPRINTLN PPENAME(),"."

SPRINT "The path where it is located is "
SPRINTLN PPEPATH(),"."

SPRINT "The date is ",DATE()," and the time is ",ТІМЕ(),"."
SPRINTLN

See Also

MPRINT/MPRINTLN Statements, PRINT/PRINTLN Statements

268 The PPL Development Kit

PPL Reference Chapter 7

STACKED Constant

Function

Set the allow stacked commands flag in an INPUTSTR or PROMPTSTR statement.

Value

16 = 10000b = 200 = 10h

Remarks

The INPUTSTR and PROMPTSTR statements have the ability to allow space and

semi-colon characters to be input independent of the valid character string specified. This

facilitates entering stacked commands (commands separated by space or semi-colon

delimiters) by only requiring a single value be set in the input statement instead of having to

add " ;" to every valid character mask.

Examples

STRING cmds

INPUTSTR “Commands",cmds, @X0E,60,MASK_ASCII(),STACKED

TOKENIZE cmds
LET cmds = СЕТТОКЕМ()

IF (cmds = "QUIT") END

KBDSTUFF cmds+TOKENSTR ()

See Also

INPUTSTR Statement, PROMPTSTR Statement

The PPL Development Kit 269

Chapter 7 PPL Reference

STARTDISP Statement

Function

Start PCBoard's display routines in a specified mode.

Syntax

STARTDISP mode

mode An integer expression with the mode for display.

Remarks

PCBoard has two modes for displaying information: non stop and line count. Non stop mode
(initiated by passing FNS, for Force Non Stop, as the mode parameter) displays information

without regard to how fast the display is or whether or not the user can read it all. Line count

mode (initiated by passing FCL, for Force Count Lines, as the mode parameter) displays

information while counting lines and pausing after every screenful to wait for user input.

Finally, NC may be specified to reinitialize the internal display counters without changing the

current mode.

Examples

STARTDISP FCL
FOR i = 1 TO 100

PRINTLN "Line ",і
NEXT

STARTDISP FNS
FOR i = 1 TO 100

PRINTLN “Line ",i
NEXT

STARTDISP NC
FOR i = 1 TO 100

PRINTLN "Line ",i

NEXT

See Also

ABORTO Function, RESETDISP Statement

270 The PPL Development Kit

PPL Reference Chapter 7

STOP Statement

Function

Abort PPE execution.

Syntax

STOP

No arguments are required

Remarks

This statement may be used to abnormally terminate PPE execution at any point. The only

real difference between this statement and END is whether or not information written to

channel 0 is saved when the . END will save the output to the script answer file; STOP will

not.

Examples

STRING Question, Answer
LET Question = "What is your street address ..."
GOSUB ask
INPUTYN "Save address",Answer, @X0E

IF (Answer = NOCHAR()) STOP

END

:ask ' Sub to ask a question, get an answer, and log them to a file
LET Answer = ""
PRINTLN "@X0E", Question

INPUT "",Answer
NEWLINES 2

FPUTLN 0, "О: ",STRIPATX (Question)

FPUTLN 0,"А: ",Answer
RETURN

See Also

END Statement, RETURN Statement

The PPL Development Kit 271

Chapter 7 PPL Reference

STRING Type

Function

Declare one or more variables of type string.

Syntax

STRING var|arr(s[,s[,s]]})(,var|arr(s{,s{,s]])]

var The name of a variable to declare. Must start with a letter [A-Z] which

may be followed by letters, digits [0-9] or the underscore [_]. May be of
any length but only the first 32 characters are used.

arr The name of an array variable to declare. The same naming conventions

as var are used.

5 The size (0-based) of ап array variable dimension. Any constant integer

expression is allowed.

Remarks

STRING variables are stored as pointers arrays of characters from 0 to 257 bytes in size. If

the array has 0 or | characters in it, it is a 0 length string. Arrays with 2 to 257 characters
have a length of the array size minus one. Valid string characters are ASCII 1 through ASCII

255. ASCII 0 is reserved for terminating the string and may not appear in the middle of the

string. A STRING assignment to an INTEGER will convert the string to the four byte binary

integer value (similar to BASIC's VAL function and C's atol function). An INTEGER to

STRING assignment will result in a string with the representation of the number (similar to

BASIC's STR$ function and C's Itoa function). If a STRING is assigned to or from any other

type, an appropriate conversion is performed automatically by PPL.

Examples

STRING char, str, tmp, labels(10), names(20,3)

See Also

BOOLEAN Type, DATE Type, INTEGER Туре, MONEY Type, TIME Type

272 The PPL Development Kit

PPL Reference Chapter 7

STRING() Function

Function

Convert any expression to a string.

Syntax

STRING (exp)

exp Any expression.

Return Type & Value

STRING Returns exp formatted as a string.

Remarks

This function is immensely useful anytime you need to convert any expression to string format.

For example, to append an integer value to the end of a string without this function, you would

need to assign the integer to a string and then append the temporary string to actual string.

This is because PPL's normal course of action when performing arithmetic with incompatible

types is to convert everything to integer first. With this function, you can accomplish the same

function in one line of code with one expression because you are forcing addition of

compatible types (strings). Note that PPL does automatically convert incompatible types

whenever possible, making this function unnecessary in many cases. This function should

only be necessary when trying to append the text representation of a non-string type to a string

via the + operator.

Examples

INTEGER i

STRING s(5)

FOR i = 1 со 5
LET s(i) = "This is string "+STRING(i)

NEXT

STRING s

LET 5 = STRING(ABORT())+" “+STRING(DATE())+" "+STRING(10)+" "

LET s = s«STRING($10.00)«" "«STRING(TIME())
PRINTLN s ' will print "0 10-31-67 10 $10.00 03:27:00" (or similar)

See Also

INSTR Function, LEN() Function, SCRTEXTO Function, SPACE() Function

The PPL Development Kit 273

Chapter 7 PPL Reference

STRIP() Function

Function

Remove all occurrences of a character from a string.

Syntax

STRIP (str,ch)

str Any string expression.

ch String with character to remove from str.

Return Type & Value

STRING Returns str without occurrences of ch that may have been present

previously.

Remarks

This function is used to strip a selected character from a string. This can be useful when you

need to remove known formatting characters from a string, such as slashes and hyphens from

a date string.

Examples

STRING s
WHILE (LEN(s) < 6) DO

INPUTSTR "Enter date (MM-DD-YY)",s,0X0E,8,"0123456789-",DEFS

LET s - STRIP(s,"-")
ENDWHILE
PRINTLN "Date (MMDDYY): ",5

See Also

КЕРІ АСЕ() Function, STRIPATX() Function

274 The PPL Development Kit

PPL Reference Chapter 7

STRIPATX() Function

Function

Remove @X codes from a string.

Syntax

STRIPATX (sexp)

sexp Any string expression.

Return Type & Value

STRING Returns sexp without any @X codes that may have been present

previously.

Remarks

This function is used to strip PCBoard @X color codes from a string or string expression.

This is useful when you want to log information to a file without the @X codes used in the

screen display.

Examples

STRING Question, Answer
LET Question - "What is your street address ..."
GOSUB ask
END

:ask ' Sub to ask a question, get an answer, and log them to a file
LET Answer - ""

PRINTLN "QXOE",Question
INPUT "",Answer

NEWLINES 2

FPUTLN 0,"Q: ",STRIPATX(Question)

FPUTLN 0,"A: ",Answer
RETURN

See Also

REPLACE(Function, STRIP() Function

ty За
i

¢ The PPL Development Kit

Chapter 7 PPL Reference

SYSOPSEC() Function

Function

Get the security level as the SysOp security level.

Syntax

SYSOPSEC()

No arguments are required

Return Type & Value

INTEGER Returns the SysOp security level as defined in PCBSetup.

Remarks

This function is useful for those occasions when you need to limit functionality in your PPL
applications to users having a security level greater than or equal to the defined SysOp security

level in PCBSetup.

Examples

INTEGER min

IF (CURSEC() »- SYSOPSEC()) THEN

LET min - 60

ELSE

LET min - 5

ENDIF

ADJTIME min

PRINTLN "Your time available has been increased by ",min," minutes"

See Also

CURSECO Function

276 The PPL Development Kit

PPL Reference Chapter 7

S DB Constant

Function

Set the share deny both (read and write) flag ina FCREATE/FOPEN/FAPPEND statement.

Value

3=1lb=30=3h

Remarks

DOS 3.1 or later (which is what is required by PCBoard) allows processes to decide what mode

of file sharing should be allowed. This constant allows you to specify that other processes may

not open the same file for either read or write access from the time you open the file to the

time you close the file. This is useful when you need exclusive access to a file for any reason

and need to restrict other processes access to the same file.

Examples

FOPEN 1,"FILE.DAT",O RD,S DB ' Deny other processes all access
FOR i = 1 TO 10

ЕСЕТ 1,5

PRINTLN 5

МЕХТ

FCLOSE 1 ' Close the file and allow others to open it in any mode

See Also

S DN Constant, S DR Constant, S DW Constant

ty ̂4 "A The PPL Development Kit

Chapter 7

278

PPL Reference

S DN Constant

Function

Set the share deny none flag ina FCREATE/FOPEN/FAPPEND statement.

Value

0 = 0b = 00 = Oh

Remarks

DOS 3.1 or later (which is what is required by PCBoard) allows processes to decide what mode

of file sharing should be allowed. This constant allows you to specify that other processes may

open the same file for read or write access from the time you open the file to the time you close

the file. This is useful when you don't need exclusive access to a file for any reason and need

not restrict other processes.

Examples

FOPEN 1,"FILE.DAT",O_RD,S_DN ' Do not deny other processes any access
FOR i = 1 TO 10

FGET 1,s

PRINTLN s

NEXT

FCLOSE 1 ' Close the file and allow others to open it in any mode

See Also

S DB Constant, S DR Constant, S DW Constant

The PPL Development Kit

PPL Reference Chapter 7

S DR Constant

Function

Set the share deny read flag ina FCREATE/FOPEN/FAPPEND statement.

Value

1=1b=lo=Ih

Remarks

DOS 3.1 or later (which is what is required by PCBoard) allows processes to decide what mode

of file sharing should be allowed. This constant allows you to specify that other processes may

open the same file, but that they may not open it for read access, from the time you open the

file to the time you close the file.

Examples

FOPEN 1,"FILE.DAT",O RD,S DR ' Deny other processes read access
FOR i = 1 TO 10

ЕСЕТ 1,5
PRINTLN 5

МЕХТ
FCLOSE 1 ' Close the file and allow others to open it іп any mode

See Also

S DB Constant, S DN Constant, S DW Constant

The PPL Development Kit 279

Chapter 7

280

PPL Reference

S DW Constant

Function

Set the share deny write flag ina FCREATE/FOPEN/FAPPEND statement.

Value

2=10b=20=2h

Remarks

DOS 3.1 or later (which is what is required by PCBoard) allows processes to decide what mode

of file sharing should be allowed. This constant allows you to specify that other processes may

open the same file, but that they may not open it for write access, from the time you open the
file to the time you close the file. This is useful when you want to ensure that data will not

change while you are reading it.

Examples

FOPEN 1,"FILE.DAT",O RD,S DW ' Deny other processes write access

FOR i - 1 TO 10
ЕСЕТ 1,5
PRINTLN s

NEXT
FCLOSE 1 ' Close the file and allow others to open it іп any mode

See Also

S_DB Constant, S_DN Constant, S_DR Constant

The PPL Development Kit

PPL Reference Chapter 7

TEMPPATH() Function

Function

Return the path to the temporary work directory as defined in PCBSetup.

Syntax

TEMPPATH ()

No arguments are required

Return Type & Value

STRING Returns the path of the node temporary work files area.

Remarks

This function will return the path where temporary work files should be created as defined in

PCBSetup. This path is a good place for small temporary files that need not be kept

permanently since it often points to a RAM drive or other fast local storage.

Examples

INTEGER гс

SHELL TRUE,rc, "DIR", ">"+TEMPPATH()+"TMPDIR"

DISPFILE TEMPPATH()+"TMPDIR", DEFS

DELETE TEMPPATH()-«"TMPDIR"

See Also

HELPPATHO Function, PPEPATHO Function, SLPATHO Function

The PPL Development Kit 281

Chapter 7 PPL Reference

TIME Type

Function

Declare one or more variables of type time.

Syntax

TIME var|arr(s[,s[,s]])[,var|arr(s[,s[,s]])]

var The name of a variable to declare. Must start with a letter [A-Z] which

may be followed by letters, digits [0-9] or the underscore [_]. May be of

any length but only the first 32 characters are used.

arr The name of an array variable to declare. The same naming conventions

as var are used.

5 The size (0-based) of an array variable dimension. Any constant integer

expression is allowed.

Remarks

TIME variables are stored as seconds elapsed since midnight. Valid times are 0 (00:00:00)

through 86399 (23:59:59). It is stored internally as a four byte unsigned long integer. Ifa

TIME is assigned to or from an INTEGER type then the seconds since midnight (0-86399) is

assigned. If a TIME is assigned to a STRING type then it is automatically converted to the

following format: "HH:MM:SS", where HH is the two digit hour (00-23), MM is the two digit

minute (00-59), and SS is the two digit second (00-59). If a foreign language is in use that

uses a different time format (for example, "HH.MM.SS") then that will be taken into account.

If a STRING is assigned to a TIME then PPL will do it's best to convert the string back to the

appropriate time. All other types, when assigned to or from a TIME, will be converted to an

INTEGER first before being assigned to or from the TIME type.

Examples

TIME tob, now, pageHours(2), hourList (24)

See Also

BOOLEAN Type, DATE Type, INTEGER Type, MONEY Type, STRING Type

282 The PPL Development Kit

PPL Reference Chapter 7

ТІМЕ() Function

Function

Get the current time.

Syntax

TIME ()

No arguments are required

Return Type & Value

TIME Returns the current time.

Remarks

The time returned is represented internally as the number of seconds elapsed since midnight.

It may be used as is (for display, storage or as an argument to another function or statement) or

assigned to an integer for arithmetic purposes. 00:00:00 (midnight) has a value of 0. 00:00:01

a value of 1, 00:01:00 a value of 60, 01:00:00 a value of 3600, etc, until 23:59:59 which has a

value of 86399.

Examples

PRINTLN "The time is ", TIME()

See Also

DATEQ Function, HOUR() Function, MINQ Function, MKDATE(O Function, SECO

Function, TIMEAP(Function

The PPL Development Kit 283

Chapter 7 PPL Reference

TIMEAP() Function

Function

Converts a time value to a 12-hour AM/PM formatted string.

Syntax

TIMEAP (texp)

texp Any time expression.

Return Type & Value

STRING Returns a string formatted with the time specified by texp in a 12-hour

AM/PM format.

Remarks

TIME values are, by default, formatted for military time ("HH:MM:SS") when displayed or

assigned to a string variable. You may wish to format them in a 12-hour AM/PM format in

some circumstances, however. This function perform the conversion and format the time in

"HH:MM:SS XM" format (HH = hour, MM = minute, SS = second, X = A or P).

Examples

PRINTLN “The current time is ",ТІМЕАР(ТІМЕ())

See Also

TIME) Function

284 The PPL Development Kit

PPL Reference Chapter 7

TOKCOUNT() Function

Function

Access the number of tokens pending.

Syntax

TOKCOUNT ()

No arguments are required

Return Type & Value

INTEGER Returns the number of tokens available.

Remarks

Parameter passing between PCBoard and PPL applications (and between PPL applications)
and command line parsing is accomplished via tokens. This function will return the number

of tokens available via the GETTOKEN statement and the GETTOKENOQ function. The

value returned by this will be decremented after each token is retrieved until it reaches 0 (no

more tokens available). The TOKENIZE function will overwrite any pending tokens with

new tokens and reinitialize this function to the new number. Finally. the TOKENSTR(O

function will clear this function to 0 and return all tokens in a string with semi-colons

separating individual tokens.

Examples

PRINTLN "There are ",TOKCOUNT()," tokens"

WHILE (TOKCOUNT() » 0) PRINTLN GETTOKEN()

See Also

GETTOKEN Statement, СЕТТОКЕМ() Function, TOKENIZE Statement, TOKENSTRO

Function

The PPL Development Kit 285

Chapter 7 PPL Reference

TOKENIZE Statement

Function

Split up a string into tokens separated by semi-colons or spaces.

Syntax

TOKENIZE sexp

sexp Any string expression.

Remarks

One of the strongest features of PCBoard is it's ability to take a series of stacked parameters

from a command line and use them all at once instead of requiring the user to navigate a series

of menus and select one option at each step of the way. The TOKENIZE statement is the PPL

equivalent of what PCBoard uses to break a command line into individual commands (tokens).

The number of tokens available may be accessed via the TOKCOUNTO function, and each

token may be accessed, one at a time, by the GETTOKEN statement and/or the

СЕТТОКЕМО function.

Examples

STRING cmdline
INPUT "Command",cmdline

TOKENIZE cmdline

PRINTLN "You entered ",TOKCOUNT()," tokens"

WHILE (TOKCOUNT() > 0) PRINTLN "Token: ",CHR(34),GETTOKEN() , СНЕ (34)

See Also

GETTOKEN Statement, GETTOKENO Function, TOKCOUNT(O Function,

TOKENSTRO Function

286 The PPL Development Kit

PPL Reference Chapter 7

TOKENSTR() Function

Function

Rebuild and return a previously tokenized string.

Syntax

TOKENSTR ()

No arguments are required

Return Type & Value

STRING Returns the rebuilt string that was previously tokenized.

Remarks

One of the strongest features of PCBoard is it's ability to take a series of stacked parameters

from a command line and use them all at once instead of requiring the user to navigate a series

of menus and select one option at each step of the way. The TOKENIZE statement is the PPL

equivalent of what PCBoard uses to break a command line into individual commands (tokens).

This function will take all pending tokens and build a string with appropriate token separators.

For example, the string "R A S" would be broken into three separate tokens; "К". "A" and "S".

TOKENSTRO would take those tokens and return the following string: "R;A:S". Note that.

regardless of the separator used in the original string, the semi-colon character will be used in

the rebuilt string.

Examples

STRING cmdline
INPUT "Command",cmdline
TOKENIZE cmdline

PRINTLN "You entered ",TOKCOUNT()," tokens"
PRINTLN "Original string: ",cmdline

PRINTLN " TOKENSTR(): ", TOKENSTR()

See Also

GETTOKEN Statement, GETTOKENO Function, TOKCOUNTO Function, TOKENIZE

Statement

The PPL Development Kit

Chapter 7 PPL Reference

TRIM() Function

Function

Trim a specified character from both ends of a string.

Syntax

TRIM(str,ch)

str Any string expression.

ch A string with the character to strip from both ends of str.

Return Type & Value

STRING Returns the trimmed str.

Remarks

A common need in programming is to strip leading and/or trailing spaces (or other
characters). This function will strip a specified character from both ends of a string and return

the trimmed string.

Examples

STRING s
LET s = " TEST
PRINTLN TRIM(s," ") ' Will print "TEST"

PRINTLN TRIM(^..... рА"+"ТА..... .,".") ' Will print "DATA"

PRINTLN TRIM("..... DA"*"TA..... "," *) ' Will print "..... DATA

See Also

LTRIMO Function, RTRIMO Function

288 The PPL Development Kit

PPL Reference Chapter 7

TRUE Constant

Function

To provide a named constant for the boolean true value in boolean expressions.

Value

1 = 16 = 10 = 1һ

Remarks

BOOLEAN logic is based on two values: TRUE (1) and FALSE (0). The literal numeric

constants 0 and 1 тау be used in expressions, or you may use the predefined named constants

TRUE and FALSE. They make for more readable, maintainable code and have no more

overhead than any other constant value at run time.

Examples

BOOLEAN flag

LET flag = TRUE

WHILE (!flag) DO

INPUTSTR "Text",s,@X0E, 60, "ABCDEFGHIJKLMNOPORSTUVWXYZ ",UPCASE

PRINTLN s

IF (s = "QUIT") LET flag = FALSE

ENDWHILE

See Also

DEFS Constant, FALSE Constant

The PPL Development Kit 289

Chapter 7

UN_

290

PPL Reference

..() Functions

Function

Get a piece of information about a node.

Syntax

UN ...()

No arguments are required

UN should be followed by one of the following: CITY, NAME, OPER, or STAT.

Return Type & Value

STRING Returns a string with the desired piece of information.

Remarks

There are actually four different functions that return information from the USERNET.XXX

Ше. UN CITY() will return the city field, UN NAME?) will return the user name field,

UN OPER) will return the operation text field, and UN ЅТАТО will return the status field.

The information returned by these functions is only meaningful after executing the RDUNET

statement for a specific node.

Examples

RDUNET PCBNODE()

WRUNET PCBNODE(),UN STAT(),UN NAME(),UN CITY(),"Running "«PPENAME(),""
RDUNET 1
WRUNET 1,UN STAT(),UN NAME(),UN CITY(),UN OPER(),"Hello there node 1"

See Also

BROADCAST Statement, RDUNET Statement, WRUNET Statement

The PPL Development Kü

PPL Reference Chapter 7

UPCASE Constant

Function

Set the force uppercase flag in an INPUTSTR or PROMPTSTR statement.

Value

8 = 1000b = 100 = 8h

Remarks

The INPUTSTR and PROMPTSTR statements have the ability to force all input characters

to uppercase. This is useful in getting case insensitive replies from the user. If this flag is

used, you need not pass lowercase valid characters as they will be automatically converted at

runtime. If this flag is not used and you need to input alphabetic characters, you should pass

both lowercase and uppercase characters in the valid character string.

Examples

STRING s
WHILE (в <> "QUIT") DO

INPUTSTR "Text",s,QXOE,60,"ABCDEFGHIJKLMNOPQRSTUVWXYZ ",UPCASE
PRINTLN s

ENDWHILE

See Also

INPUTSTR Statement, PROMPTSTR Statement

The PPL Development Kit 291

Chapter 7 PPL Reference

UPPER() Function

Function

Converts lowercase characters in a string to uppercase.

Syntax

UPPER (sexp)

sexp Any string expression.

Return Type & Value

STRING Returns sexp with all lowercase characters converted to uppercase.

Remarks

Although "STRING" is technically different from "string" (ie, the computer doesn't recognize

them as being the same because one is uppercase and the other is lowercase), it is often

necessary to save, display or compare information in a case insensitive format. This function

will return a string with all lowercase characters converted to uppercase. So, using the above

example, UPPER("string") would return "STRING".

Examples

STRING s

WHILE (UPPER(s) <> "QUIT") DO

INPUT "Text",s

PRINTLN LOWER (5)

ENDWHILE

See Also

LOWERO Function

292 The PPL Development Kit

PPL Reference Chapter 7

U_ADDR() VARIABLE ARRAY

Function

Allow reading and writing of the current users address information.

Type & Value

STRING

Subscript 0

Subscript 1

Subscript 2

Subscript 3

Subscript 4

Subscript 5

Remarks

Address Line 1 (50 characters max).

Address Line 2 (50 characters max).

City (25 characters max).

State (10 characters max).

ZIP Code (10 characters max).

Country (15 characters max).

This array is filled with information from the current users record when the GETUSER

statement is executed. It may then be changed and written back to the users record with the

PUTUSER statement. Note that the array is empty until a GETUSER statement is processed

and that changes are not written until a PUTUSER statement is processed. Additionally. the

array will only have meaningful information if the address PSA is installed. The existence of

the address PSA may be checked with the PSAQ function.

Examples

IF (PSA(3)) THEN
GETUSER

INPUT "Addr 1",U_ADDR(0)

INPUT "Addr 2",U_ADDR(1)

INPUT "City ",U_ADDR(2)

INPUT "State ",U ADDR(3)

INPUT "ZIP ",U ADDR(4)
INPUT "Cntry ",U ADDR(5)

PUTUSER
ENDIF

See Also

GETUSER Statement, PSA() Function, PUTUSER Statement

The PPL Development Kit 293

Chapter 7 PPL Reference

U_ALIAS VARIABLE

Function

Allow reading and writing of the current users alias.

Type & Value

STRING The current users alias (25 characters max).

Remarks

This STRING is filled with information from the current users record when the GETUSER
statement is executed. It may then be changed and written back to the users record with the

PUTUSER statement. Note that it is empty until a GETUSER statement is processed and

that changes are not written until a PUTUSER statement is processed. Additionally, it will

only have meaningful information if the alias PSA is installed. The existence of the alias PSA

may be checked with the PSA() function.

Examples

IF (PSA(1)) THEN

GETUSER

PRINTLN "Your alias is ",U ALIAS
ELSE

PRINTLN "Your name is ",U NAME()
ENDIF

See Also

GETUSER Statement, PSA() Function, PUTUSER Statement

294 The PPL Development Kit

PPL Reference Chapter 7

U_BDL() Function

Function

Access the total number of bytes downloaded by the current user.

Syntax

U_BDL ()

No arguments are required

Return Type & Value

INTEGER Returns the current users total bytes downloaded.

Remarks

This function will return information that can be useful in modifying PCBoard's built in ratio

management system and the view user information command. Of course, it is not limited to

that; anywhere you need to know how many bytes the current user has downloaded. this

function will provide that information. Unlike the predefined U_... user variables. this

function does not require the use of GETUSER to return valid information.

Examples

PRINTLN "You have ULed ",U BUL()," bytes and DLed ",U BDL()," bytes."

See Also

U_BDLDAYO Function, О BUL(Function, О FDL() Function, О FUL(Function

The PPL Development Kit 295

Chapter 7

296

PPL Reference

U_BDLDAY() Function

Function

Access the number of bytes downloaded by the current user today.

Syntax

U_BDLDAY ()

No arguments are required

Return Type & Value

INTEGER Returns the current users bytes downloaded today.

Remarks

This function will return information that can be useful in modifying PCBoard's built in ratio

management system and the view user information command. Of course, it is not limited to

that; anywhere you need to know how many bytes the current user has downloaded today, this

function will provide that information. Unlike the predefined U_... user variables, this

function does not require the use of GETUSER to return valid information.

Examples

PRINTLN "You have downloaded ",U BDLDAY()," bytes today."

See Also

U_BDLO Function, U BUL() Function, U FDL() Function, U FUL(Function

The PPL Development Kit

PPL Reference Chapter 7

U_BDPHONE VARIABLE

Function

Allow reading and writing of the current users business/data phone number.

Type & Value

STRING The current users business/data phone number (13 characters max).

Remarks

This STRING is filled with information from the current users record when the GETUSER
statement is executed. It may then be changed and written back to the users record with the

PUTUSER statement. Note that it is empty until a GETUSER statement is processed and

that changes are not written until a PUTUSER statement is processed.

Examples

GETUSER

PRINTLN " Home/Voice Phone Number: ",U HVPHONE

PRINTLN "Business/Data Phone Number: ",U BDPHONE

See Also

GETUSER Statement, PUTUSER Statement, U HVPHONE Variable

The PPL Development Kit 297

Chapter 7

298

PPL Reference

U_BUL() Function

Function

Access the total number of bytes uploaded by the current user.

Syntax

U_BUL ()

No arguments are required

Return Type & Value

INTEGER Returns the current users total bytes uploaded.

Remarks

This function will return information that can be useful in modifying PCBoard's built in ratio

management system and the view user information command. Of course, it is not limited to

that: anywhere you need to know how many bytes the current user has uploaded, this function

will provide that information. Unlike the predefined U_... user variables, this function does

not require the use of GETUSER to return valid information.

Examples

PRINTLN "You have ULed ",U BUL()," bytes and DLed ",U BDL()," bytes."

See Also

О BDL Function, О BDLDAYO(Function, О FDL() Function, U FUL(Function

The PPL Development Kit

PPL Reference Chapter 7

U_CITY VARIABLE

Function

Allow reading and writing of the current users city information.

Type & Value

STRING The current users city information (24 characters max).

Remarks

This STRING is filled with information from the current users record when the GETUSER

statement is executed. It may then be changed and wnitten back to the users record with the

PUTUSER statement. Note that it is empty until a GETUSER statement is processed and

that changes are not written until a PUTUSER statement is processed. Note that this

information is separate from the address PSA and does not require that the address PSA be

installed.

Examples

GETUSER

LET U CITY = "Timbuktu"

PRINTLN "You are now from Timbuktu! е

PUTUSER

See Also

GETUSER Statement, PUTUSER Statement

The PPL Development Kit 299

Chapter 7 PPL Reference

U_CLS VARIABLE

Function

Allow reading and writing of the current users message clear screen flag.

Type & Value

BOOLEAN The current users clear screen flag status (TRUE or FALSE).

Remarks

This BOOLEAN is set with information from the current users record when the GETUSER

statement is executed. It may then be changed and written back to the users record with the

PUTUSER statement. Note that it is undefined until a GETUSER statement is processed and

that changes are not written until a PUTUSER statement is processed.

Examples

GETUSER

PRINTLN "Turning on the message clear screen flag..."
LET U CLS - TRUE

PUTUSER

See Also

GETUSER Statement, PUTUSER Statement, U LONGHDR Variable, U SCROLL
Variable

300 The PPL Development Kit

PPL Reference Chapter 7

U_CMNT1 VARIABLE

Function

Allow reading and writing of the current users comment field.

Type & Value

STRING The current users comment field (30 characters max).

Remarks

This STRING is filled with information from the current users record when the GETUSER

statement is executed. It may then be changed and written back to the users record with the

PUTUSER statement. Note that it is empty until a GETUSER statement is processed and

that changes are not written until a PUTUSER statement is processed. Note that this

information is separate from the notes PSA (though similar) and does not require that the

notes PSA be installed.

Examples

GETUSER

PRINTLN " User Comment: ",U CMNT1

PRINTLN "SysOp Comment: ",0. CMNT2

See Also

GETUSER Statement, PUTUSER Statement, О CMNT2 Variable

The PPL Development Kit 301

Chapter 7

302

PPL Reference

U_CMNT2 VARIABLE

Function

Allow reading and writing of the current users SysOp comment field.

Type & Value

STRING The current users SysOp comment field (30 characters max).

Remarks

This STRING 15 filled with information from the current users record when the GETUSER

statement is executed. It may then be changed and written back to the users record with the

PUTUSER statement. Note that it is empty until a GETUSER statement is processed and

that changes are not written until a PUTUSER statement is processed. Note that this

information is separate from the notes PSA (though similar) and does not require that the
notes PSA be installed.

Examples

GETUSER

PRINTLN " User Comment: ",U_CMNT1

PRINTLN "SysOp Comment: ",U. CMNT2

See Also

GETUSER Statement, PUTUSER Statement, U CMNTI Variable

The PPL Development Kit

PPL Reference Chapter 7

U_DEF79 VARIABLE

Function

Allow reading and writing of the current users message editor default width flag.

Type & Value

BOOLEAN The current users default editor width flag status (TRUE or FALSE).

Remarks

This BOOLEAN is set with information from the current users record when the GETUSER
statement is executed. It may then be changed and written back to the users record with the

PUTUSER statement. Note that it is undefined until a GETUSER statement is processed and

that changes are not written until a PUTUSER statement is processed.

Examples

GETUSER
PRINTLN "Turning on the wide message editor flag..."

LET U_DEF79 = TRUE
PUTUSER

See Also

GETUSER Statement, PUTUSER Statement, U FSE Variable, U_FSEP Variable

The PPL Development Kit 303

Сһаріег 7 PPL Reference

U_EXPDATE VARIABLE

Function

Allow reading and writing of the current users subscription expiration date.

Type & Value

DATE The current users subscription expiration date.

Remarks

This DATE is set with information from the current users record when the GETUSER

statement is executed. It may then be changed and written back to the users record with the

PUTUSER statement. Note that it is undefined until a GETUSER statement is processed and

that changes are not written until a PUTUSER statement is processed.

Examples

GETUSER

PRINTLN "Your subscription will expire on ",U_EXPDATE

See Also

GETUSER Statement, PUTUSER Statement, U EXPSEC Variable

304 The PPL Development Kit

PPL Reference Chapter 7

U_EXPERT VARIABLE

Function

Allow reading and writing of the current users expert status flag.

Type & Value

BOOLEAN The current users expert flag status (TRUE or FALSE).

Remarks

This BOOLEAN is set with information from the current users record when the GETUSER

statement is executed. It may then be changed and written back to the users record with the

PUTUSER statement. Note that it is undefined until a GETUSER statement is processed and

that changes are not written until a PUTUSER statement is processed.

Examples

GETUSER

PRINTLN "Turning off expert mode..."

LET U_EXPERT = FALSE
PUTUSER

See Also

GETUSER Statement, PUTUSER Statement

The PPL Development Kit 30. A

Chapter 7

306

PPL Reference

U_EXPSEC VARIABLE

Function

Allow reading and writing of the current users expired security level.

Type & Value

INTEGER The current users security level (0 - 255).

Remarks

This INTEGER is set with information from the current users record when the GETUSER

statement is executed. It may then be changed and written back to the users record with the

PUTUSER statement. Note that it is undefined until a GETUSER statement is processed and

that changes are not written until a PUTUSER statement is processed.

Examples

GETUSER
PRINTLN "Your security after subscription expiration will be ",U_SEC

See Also

CURSECQ Function, GETUSER Statement, PUTUSER Statement, U_EXPDATE

Variable, U_SEC Variable

The PPL Development Kit

PPL Reference Chapter 7

U_FDL() Function

Function

Access the total number of files downloaded by the current user.

Syntax

U FDL()

No arguments are required

Return Type & Value

INTEGER Returns the current users total files downloaded.

Remarks

This function will return information that can be useful in modifying PCBoard's built in ratio

management system and the view user information command. Of course, it is not limited to
that; anywhere you need to know how many files the current user has downloaded, this

function will provide that information. Unlike the predefined U ... user variables. this

function does not require the use of GETUSER to return valid information.

Examples

PRINTLN "You have ULed ",U FUL()," bytes and DLed ",U PFDL()," files."

See Also

U_BDLO Function, О BDLDAYOQ Function, О BUL(Function, U FUL() Function

The PPL Development Kit 307

Chapter 7

308

PPL Reference

U_FSE VARIABLE

Function

Allow reading and writing of the current users full screen editor default flag.

Type & Value

BOOLEAN The current users full screen editor default flag status (TRUE or FALSE).

Remarks

This BOOLEAN is set with information from the current users record when the GETUSER

statement is executed. It may then be changed and written back to the users record with the

PUTUSER statement. Note that it is undefined until a GETUSER statement is processed and

that changes are not written until a PUTUSER statement is processed.

Examples

GETUSER

PRINTLN "Turning on full screen editor as default..."

LET U_FSE = TRUE

PUTUSER

See Also

GETUSER Statement, PUTUSER Statement, U DEF79 Variable, U FSEP Variable

The PPL Development Kit

PPL Reference Chapter 7

U_FSEP VARIABLE

Function

Allow reading and writing of the current users full screen editor prompt flag.

Type & Value

BOOLEAN The current users full screen editor prompt flag status (TRUE or FALSE).

Remarks

This BOOLEAN is set with information from the current users record when the GETUSER

statement is executed. It may then be changed and written back to the users record with the

PUTUSER statement. Note that it is undefined until a GETUSER statement is processed and

that changes are not written until a PUTUSER statement is processed.

Examples

GETUSER

PRINTLN “Turning off full screen editor prompting...”

LET U_FSEP = FALSE
PUTUSER

See Also

GETUSER Statement, PUTUSER Statement, U_DEF79 Variable, О FSE Variable

The PPL Development Kit 309

Chapter 7

310

PPL Reference

U_FUL() Function

Function

Access the total number of files uploaded by the current user.

Syntax

U_FUL ()

No arguments are required

Return Type & Value

INTEGER Returns the current users total files uploaded.

Remarks

This function will return information that can be useful in modifying PCBoard's built in ratio

management system and the view user information command. Of course, it is not limited to

that; anywhere you need to know how many files the current user has uploaded, this function

will provide that information. Unlike the predefined U_... user variables, this function does

not require the use of GETUSER to return valid information.

Examples

PRINTLN "You have ULed ",U FUL()," bytes and DLed ",U FDL()," files."

See Also

О BDLO Function, U_BDLDAY(Function, О BUL() Function, U FDL() Function

The PPL Development Kit

PPL Reference Chapter 7

U_HVPHONE VARIABLE

Function

Allow reading and writing of the current users home/voice phone number.

Type & Value

STRING The current users home/voice phone number (13 characters max).

Remarks

This STRING is filled with information from the current users record when the GETUSER

statement is executed. It may then be changed and written back to the users record with the

PUTUSER statement. Note that it is empty until a GETUSER statement is processed and

that changes are not written until a PUTUSER statement is processed.

Examples

GETUSER

PRINTLN " Home/Voice Phone Number: ",U HVPHONE
PRINTLN "Business/Data Phone Number: ",U BDPHONE

See Also

GETUSER Statement, PUTUSER Statement, U BDPHONE Variable

The PPL Development Kit 311

Chapter 7 PPL Reference

U_INCONF() Function

Function

Determine if a user is registered in a conference.

Syntax

U_INCONF (rec, conf)

rec An integer expression with the record number of the user to check.

conf An integer expression with the conference number to check.

Return Type & Value

BOOLEAN Returns TRUE if the user is registered in the specified conference, FALSE

otherwise.

Remarks

It is sometimes necessary to know if a user is registered in a conference (for example, when

entering a message to a particular user). This function will return TRUE if the user is

registered in the conference specified. Before calling this function you need to find the users

record number from the USERS file with the U RECNUM Y) function.

Examples

INTEGER i,rec
STRING un,ynStr(1)

LET ynStr(0) - "NO"

LET ynStr(1) - "YES"
INPUT "User name",un

NEWLINE

LET rec = U, RECNUM (un)
FOR i = 1 TO 10

PRINTLN un," in conf ",i,": ",ynStr(U_INCONF(i, rec))
NEXT

See Also

U_RECNUMO Function

312 The PPL Development Kit

PPL Reference Chapter 7

U_LDATE() Function

Function

Access the last log on date of a user.

Syntax

U LDATE()

No arguments are required

Return Type & Value

DATE Returns the current users last log on date.

Remarks

PCBoard tracks the last log on date for each user. This function will return that datc for thc

user currently online. Unlike the predefined U ... user variables, this function docs not requirc

the use of GETUSER to return valid information.

Examples

PRINTLN "You last logged on ",U LDATE(),"."

See Also

0 LDIR(Function, О LTIMEQ Function

The PPL Development Kit 313

Chapter 7 PPL Reference

U_LDIR() Function

Function

Access the latest file date found in a file scan by a user.

Syntax

U LDIR()

No arguments are required

Return Type & Value

DATE Returns the latest file date found by the current user.

Remarks

PCBoard tracks the latest file found by each user. This function will return that date for the

user currently online. Unlike the predefined U ... user variables, this function does not require

the use of GETUSER to return valid information.

Examples

PRINTLN "Latest file found was dated ",U LDIR(),"."

See Also

U LDATE)O Function, О LTIME(Q Function

314 The PPL Development Кі

PPL Reference Chapter 7

U_LOGONS() Function

Function

Access the total number of system logons by the current user.

Syntax

U LOGONS()

No arguments are required

Return Type & Value

INTEGER Returns the current users total system logons.

Remarks

PCBoard tracks the total number of logons for each user. This function will return that

number for the user currently online. Unlike the predefined U ... user variables. this function

does not require the use of GETUSER to return valid information.

Examples

PRINTLN "You have logged оп to @BOARDNAME@ ",U LOGONS()," times."

See Also

CALLNUMO Function, LOGGEDONO Function, ONLOCAL(Function

The PPL Development Kit 315

Chapter 7 PPL Reference

U_LONGHDR VARIABLE

Function

Allow reading and writing of the current users long message header flag.

Type & Value

BOOLEAN The current users long message header flag status (TRUE or FALSE).

Remarks

This BOOLEAN is set with information from the current users record when the GETUSER

statement is executed. It may then be changed and written back to the users record with the

PUTUSER statement. Note that it is undefined until a GETUSER statement is processed and

that changes are not written until a PUTUSER statement is processed.

Examples

GETUSER

PRINTLN “Turning on long message headers..."

LET U_LONGHDR = TRUE

PUTUSER

See Also

GETUSER Statement, PUTUSER Statement, U_CLS Variable, U_SCROLL Variable

316 The PPL Development Kit

PPL Reference Chapter 7

U_LTIME() Function

Function

Access the time of day that a user last logged on.

Syntax

0 ІТІМЕ()

No arguments аге required

Return Type & Value

TIME Returns the time of day of the current users last log on.

Remarks

PCBoard tracks the last time of day of the last log on for each user. This function will return

that time for the user currently online. Unlike the predefined U_... user variables, this

function does not require the use of GETUSER to return valid information.

Examples

PRINTLN "You last logged on at ",U LTIME(),"."

See Also

О LDATEO Function, О LDIR() Function

The PPL Development Kit 317

Chapter 7 PPL Reference

U_MSGRD() Function

Function

Access the total number of messages read by the current user.

Syntax

U MSGRD()

No arguments are required

Return Type & Value

INTEGER Returns the current users total messages read.

Remarks

PCBoard tracks the total number of messages read by each user. This function will return that

number for the user currently online. One quick idea for use: а message/file ratio

enforcement door. Unlike the predefined U ... user variables, this function does not require

the use of GETUSER to return valid information.

Examples

IF ((U MSGRD()-«U MSGWR())/U FDL() > 10) THEN

PRINTLN "You need to do more messaging!!!"
END

ENDIF

See Also

U_MSGWRO Function

318 The PPL Development Kit

PPL Reference Chapter 7

U MSGWR() Function

Function

Access the total number of messages written by the current user.

Syntax

U, MSGWR ()

No arguments are required

Return Type & Value

INTEGER Returns the current users total messages written.

Remarks

PCBoard tracks the total number of messages written by each user. This function will return
that number for the user currently online. One quick idea for use: a message/file ratio

enforcement door. Unlike the predefined U ... user variables, this function does not require

the use of GETUSER to return valid information.

Examples

IF ((U. MSGRD() +0 MSGWR())/U FDL() > 10) THEN

PRINTLN "You need to do more messaging!!!"
END

ENDIF

See Also

0 MSGRDO Function

The PPL Development Kit 319

Chapter 7 PPL Reference

U_NAME() Function

Function

Access the current users name.

Syntax

U NAME()

No arguments are required

Return Type & Value

STRING Returns a string with the current users name.

Remarks

Perhaps the most important piece of information about a caller is his name. The user name

differentiates a user from every other user on the BBS and can be used to track PPE user

information that must be kept separate from all other users information. Unlike the predefined

U ... user variables, this function does not require the use of GETUSER to return valid

information.

Examples

IF (U NAME() - "JOHN DOE") THEN

PRINTLN "I know who you are! Welcome!"
GETUSER

LET U SEC - 110

PUTUSER

PRINTLN "Automatically upgraded!"
ENDIF

See Also

CURCONFO Function, MESSAGE Statement

320 The PPL Development Kit

PPL Reference Chapter 7

U_NOTES() VARIABLE ARRAY

Function

Allow reading and writing of current user notes.

Type & Value

STRING

Subscript 0-4 SysOp defineable user notes (60 characters max).

Remarks

This array is filled with information from the current users record when the GETUSER

statement is executed. It may then be changed and written back to the users record with the

PUTUSER statement. Note that the array is empty until a GETUSER statement is processed

and that changes are not written until a PUTUSER statement is processed. Additionally, the

array will only have meaningful information if the notes PSA is installed. The existence of the

notes PSA may be checked with the PSAQ function.

Examples

INTEGER i
IF (PSA(6)) THEN

GETUSER
FOR i = 0 TO 4

PRINTLN "Note ",i+1,": ",U NOTES(1)
NEXT

ENDIF

See Also

GETUSER Statement, PSA() Function, PUTUSER Statement

The PPL Development Kit 21

Chapter 7 PPL Reference

U_PAGELEN VARIABLE

Function

Allow reading and writing of the current users page length setting.

Type & Value

INTEGER The current users page length (0 - 255).

Remarks

This integer is set with information from the current users record when the GETUSER
statement is executed. It may then be changed and written back to the users record with the

PUTUSER statement. Note that it is undefined until a GETUSER statement is processed and

that changes are not written until a PUTUSER statement is processed.

Examples

GETUSER

PRINTLN "Your page length was ",U_PAGELEN

LET U_PAGELEN = 20

PRINTLN "Your page length is now ",U_PAGELEN
PUTUSER

See Also

GETUSER Statement, PUTUSER Statement

322 The PPL Development Kit

PPL Reference Chapter 7

U_PWD VARIABLE

Function

Allow reading and writing of the current users password.

Type & Value

STRING The current users password (12 characters max).

Remarks

This STRING is filled with information from the current users record when the GETUSER

statement is executed. It may then be changed and written back to the users record with the

PUTUSER statement. Note that it is empty until a GETUSER statement is processed and

that changes are not written until a PUTUSER statement is processed. A mask of valid

characters that may be used in the U_PWD variable is available via the MASK_PWD

function.

Examples

STRING s

INPUT "Enter Password",s,@X0E,12,MASK_PWD() ,UPCASE
GETUSER

IF (s <> U_PWD) THEN
PRINTLN "Sorry, hanging up"
HANGUP

ENDIF

See Also

GETUSER Statement, MASK PWDO Function, NEWPWD Statement, PUTUSER
Statement, О PWDEXP Variable, О PWDHISTOQ Function, U PWDLCO Function,

О PWDTCO Function

The PPL Development Kit 23

Chapter 7 PPL Reference

U PWDEXP VARIABLE

Function

Allow reading and writing of the current users password expiration date.

Type & Value

DATE The current users password expiration date.

Remarks

This DATE is set with information from the current users record when the GETUSER

statement is executed. It may then be changed and written back to the users record with the

PUTUSER statement. Note that it is undefined until a GETUSER statement is processed and

that changes are not written until a PUTUSER statement is processed. Additionally, it will

only have meaningful information if the password PSA is installed. The existence of the

password PSA may be checked with the PSA() function.

Examples

IF (PSA(4)) THEN

GETUSER

PRINTLN U PWDEXP-DATE()," until current password expiration"

LET U PWDEXP = DATE()+30

PRINTLN "You now have 30 days until you *MUST* change you password."
PUTUSER

ENDIF

See Also

GETUSER Statement, NEWPWD Statement, PSA() Function, PUTUSER Statement,

О PWD Variable, U PWDHIST(Function, U PWDLCOQ Function, U_PWDTCO

Function

324 The PPL Development Kit

PPL Reference Chapter 7

U_PWDHIST() Function

Function

Access the last three passwords used by the current user.

Syntax

U_PWDHIST (num)

num The number of the password from the history to return (1 through 3).

Return Type & Value

STRING Returns the specified password from the history (1 for the most recent, 3

for the least recent).

Remarks

PCBoard has the ability to track the last three passwords used by each user. This function will

return one of those passwords from the history for the user currently online. Unlike the

predefined U ... user variables, this function does not require the use of GETUSER to return

valid information. However, it does require that the password PSA has been installed to return

meaningful information. The existence of the password PSA may be checked via the PSA()

function.

Examples

INTEGER i
IF (PSA(4)) THEN

FOR i = 1 TO 3

PRINTLN "Password history ",i,": ",U_PWDHIST(i)
NEXT

ENDIF

See Also

NEWPWD Statement, PSAQ Function, О PWD Variable, U PWDEXP ! ariable,

О PWDLC) Function, U_PWDTCO Function

The PPL Development Kit 325

Chapter 7 PPL Reference

U_PWDLC() Function

Function

Access the last date the user changed his password.

Syntax

U_PWDLC ()

No arguments are required

Return Type & Value

DATE Returns the last date the user changed his password.

Remarks

PCBoard has the ability to track the last date of a password change for each user. This

function will return that date for the user currently online. Unlike the predefined U_... user

variables, this function does not require the use of GETUSER to return valid information.

However, it does require that the password PSA has been installed to return meaningful

information. The existence of the password PSA тау be checked via the PSA() function.

Examples

IF (Р5А(4)) PRINTLN "You last changed your password оп ",U PWDLC(),"."

See Also

NEWPWD Statement, PSAQ Function, U PWD Variable, U PWDEXP Variable,

U_PWDHISTO Function, О PWDTCO Function

326 The PPL Development Kit

PPL Reference Chapter 7

U_PWDTC() Function

Function

Access the number of times the user has changed his password.

Syntax

U_PWDTC ()

No arguments are required

Return Type & Value

INTEGER Returns the number of times the user has changed his password.

Remarks

PCBoard has the ability to track the total number of times each user changes his password.

This function will return that count for the user currently online. Unlike the predefined U_...

user variables, this function does not require the use of GETUSER to return valid

information. However, it does require that the password PSA has been installed to return

meaningful information. The existence of the password PSA may be checked via the PSAQ
function.

Examples

IF (PSA(4)) THEN

PRINTLN "You have changed your password ",U PWDTC()," times."
ENDIF

See Also

NEWPWD Statement, PSAQ Function, U PWD Variable, U PWDEXP Variable,

О PWDHISTY Function, О PWDLCY) Function

The PPL Development Kit 327

Chapter 7 PPL Reference

U_RECNUM() Function

Function

Determine if a user is registered on the system and what the record number is.

Syntax

U_RECNUM (user)

user A string expression with the user name to search for.

Return Type & Value

INTEGER Returns the record number of the user in the USERS file if found or -1 if

not found.

Remarks

This function serves two purposes. The first is to determine whether or not a given user name

is registered on the system. If the value -1 is returned the user isn't in the user files. The

second use is to get the users record number for the О ІЧСОМЕ() function to determine

whether or not a user is registered in a given conference.

Examples

INTEGER i,rec
STRING un,ynStr(1)
LET ynStr(0) - "NO"

LET ynStr(1) - "YES"

INPUT "User name",un

NEWLINE

LET rec - U RECNUM(un)

FOR i = 1 TO 10
PRINTLN un," in conf ",i,": “,ynStr(U_INCONF (i, rec))

NEXT

See Also

U_INCONFO Function

328 The PPL Development Kit

PPL Reference Chapter 7

U_SCROLL VARIABLE

Function

Allow reading and writing of the current users multi-screen message scroll flag.

Type & Value

BOOLEAN The current users scroll flag status (TRUE or FALSE).

Remarks

This BOOLEAN is set with information from the current users record when the GETUSER

statement is executed. It may then be changed and written back to the users record with the

PUTUSER statement. Note that it is undefined until a GETUSER statement is processed and

that changes are not written until a PUTUSER statement is processed.

Examples

GETUSER

PRINTLN "Turning off message scrolling..."

LET U_SCROLL = FALSE

PUTUSER

See Also

GETUSER Statement, PUTUSER Statement, U_CLS Variable, U_LONGHDR Variable

The PPL Development Kit 329

Chapter 7 PPL Reference

U_SEC VARIABLE

Function

Allow reading and writing of the current users security level.

Type & Value

INTEGER The current users security level (0 - 255).

Remarks

This INTEGER is set with information from the current users record when the GETUSER
statement is executed. It may then be changed and written back to the users record with the

PUTUSER statement. Note that it is undefined until a GETUSER statement is processed and

that changes are not written until a PUTUSER statement is processed.

Examples

GETUSER
PRINTLN "Raising your security to level 20..."

LET U_SEC = 20

PUTUSER

PRINTLN “Automatic upgrade complete!"

See Also

CURSECO Function, GETUSER Statement, PUTUSER Statement, О EXPSEC Variable

330 The PPL Development Kit

PPL Reference Chapter 7

U_STAT() Function

Function

Access a statistic about the current user.

Syntax

U_STAT (stat)

stat The statistic to retrieve (1 through 15).

Return Type & Value

DATE Returns the first date the user called the system if stat is 1.

INTEGER Returns one of the following for all other values of stat:

2 The number of times the user has paged the SysOp;

3 The number of group chats the user has participated in;

4 The number of comments left by the user;

5 The number of 300 bps connects by the user;

6 The number of 1200 bps connects by the user;

7 The number of 2400 bps connects by the user;

8 The number of connects by the user greater than 2400 bps and less than or

equal to 9600 bps (9600 bps >= connect speed > 2400 bps):

9 The number of connects by the user greater than 9600 bps and less than or

equal to 14,400 bps (14,400 bps >= connect speed > 9600 bps):

10 The number of security violations by the user;

H The number of "not registered in conference" warnings to the user:

12 The number of times the user's download limit has been reached:

13 The number of "file not found" warnings to the user;

14 The number of password errors to access the user's account:

15 The number of verify errors to access the user's account.

The PPL Development Kit 331

Chapter 7 PPL Reference

Remarks

PCBoard has the ability to track a number of statistics about the user. This function will

return the desired statistic for the user currently online. Unlike the predefined U_... user

variables, this function does not require the use of GETUSER to retum valid information.
However, it does require that the statistics PSA has been installed to return meaningful

information. The existence of the statistics PSA may be checked via the PSAQ function.

Examples

STRING label

INTEGER i

FOPEN 1, PPEPATH()+"STATTEXT",O_RD,S_DN

FOR i = 1 Т0 15

ЕСЕТ 1,label

PRINTLN label," - ",U_STAT(i)

NEXT

FCLOSE 1

See Also

PSAQ Function

332 The PPL Development Kit

PPL Reference Chapter 7

U_TIMEON() Function

Function

Access the users time online today in minutes.

Syntax

U_TIMEON ()

No arguments are required

Return Type & Value

INTEGER Returns the users time online today in minutes.

Remarks

PCBoard tracks the users time online each day. This function will return the elapsed time for

the user currently online. Unlike the predefined U_... user variables, this function does not

require the use of GETUSER to return valid information.

Examples

PRINTLN "You have been online for ",U TIMEON()," total minutes today."

See Also

ADJTIME Statement, MINLEFT() Function, MINONO Function

The PPL Development Kit 333

Chapter 7 PPL Reference

U TRANS VARIABLE

Function

Allow reading and writing of the current users default transfer protocol letter.

Type & Value

STRING The current users default transfer protocol letter (1 character max).

Remarks

This STRING is filled with information from the current users record when the GETUSER

statement is executed. It may then be changed and written back to the users record with the

PUTUSER statement. Note that it is empty until a GETUSER statement is processed and

that changes are not written until a PUTUSER statement is processed. Valid characters that

may be used in the U TRANS variable are A through Z and 0 through 9.

Examples

GETUSER
PRINTLN "Your default file transfer protocol letter is "^,U TRANS
LET О TRANS = "М" ' Set to no default protocol
PRINTLN "Default file transfer protocol letter set to None"
PUTUSER

See Also

GETUSER Statement, PUTUSER Statement

334 The PPL Development Kit

PPL Reference Chapter 7

U_VER VARIABLE

Function

Allow reading and writing of the current users verification string.

Type & Value

STRING The current users verification string (25 characters max).

Remarks

This STRING is filled with information from the current users record when the GETUSER

statement is executed. It may then be changed and written back to the users record with the

PUTUSER statement. Note that it is empty until a GETUSER statement is processed and

that changes are not written until a PUTUSER statement is processed. Additionally, it will

only have meaningful information if the verification PSA is installed. The existence of the

verification PSA may be checked with the PSA() function.

Examples

STRING s

IF (PSA(2)) THEN

GETUSER

PRINTLN "Enter verification information"
INPUT "",s

IF (s <> 0 УЕА) HANGUP
ELSE

PRINTLN "No verification information available"

ENDIF

See Also

GETUSER Statement, PSA() Function, PUTUSER Statement

The PPL Development Kit 335

Chapter 7 PPL Reference

VALCC() Function

Function

Tests a string for credit card number format validity.

Syntax

VALCC (sexp)

sexp Any string expression.

Return Type & Value

BOOLEAN Returns TRUE if the string is a valid credit card number format, FALSE

otherwise.

Remarks

This function will take a string and attempt to identify it as a credit card number. If the

number is invalid for any reason (insufficient digits or bad checksum, primarily) then this

function will return FALSE, otherwise it will return TRUE.

Examples

STRING 5
WHILE (!VALCC(s)) DO

INPUT "CC #",s
NEWLINES 2

ENDWHILE
PRINTLN CCTYPE(s)," - ",FMTCC(s)

See Also

CCTYPE) Function, FMTCCQ Function, VALDATEO Function, VALTIMEQO Function

336 The PPL Development Kit

PPL Reference Chapter 7

VALDATE() Function

Function

Tests a string for date format validity.

Syntax

VALDATE (ѕехр)

sexp Any string expression.

Return Type & Value

BOOLEAN Returns TRUE if the string is a valid date format, FALSE otherwise.

Remarks

PPL does it best to convert incompatible types, as needed, automatically. Converting a

STRING type to a DATE type is particularly problematic because of the virtually unlimited

numbers of strings possible. This function checks to make sure that the hour is from 0 to 23,

the minute is from 0 to 59, and the second (optional) is from 0 to 59. Also, each field

(hours/minutes/seconds) must be separated by a colon. If the string matches these

requirements then the string is considered valid and TRUE is returned. Any other string will

result іп а FALSE value being returned.

Examples

STRING s

WHILE (!VALTIME(s)) DO

INPUT "Time",s
NEWLINES 2

ENDWHILE

TIME t

LET С = 5

PRINTLN s," ",t

See Also

VALCCO Function, VALDATEQ Function

The PPL Development Kit 337

Chapter 7 PPL Reference

VALTIME() Function

Function

Tests a string for time format validity.

Syntax

VALTIME (sexp)

sexp Any string expression.

Return Type & Value

BOOLEAN Returns TRUE if the string is a valid time format, FALSE otherwise.

Remarks

PPL does it best to convert incompatible types, as needed, automatically. Converting a

STRING type to a TIME type is particularly problematic because of the virtually unlimited

numbers of strings possible. This function checks to make sure that the hour is from 0 to 23,

the minute is from 0 to 59, and the second (optional) is from 0 to 59. Also, each field

(hours/minutes/seconds) must be separated by a colon. If the string matches these

requirements then the string is considered valid and TRUE is returned. Any other string will

result in a FALSE value being returned.

Examples

STRING s

WHILE (!VALTIME(s)) DO
INPUT "Time",s
NEWLINES 2

ENDWHILE

TIME t
LET t = s
PRINTLN s," ",t

See Also

VALCCO Function, VALDATE(Function

338 The PPL Development Kit

PPL Reference Chapter 7

VARADDR Statement

Function

Sets a variable to the complete address of another variable.

Syntax

VARADDR src,dest

src The variable to get the address of.

dest The variable to store the address in.

Remarks

This statement is primarily useful in conjunction with the DOINTR statement. It may be

necessary to give an interrupt the address of a memory location that can be used to store

information. This statement will allow you to get the address of a specified variable to pass to

the DOINTR statement.

Examples

' Create subdirectory - DOS function 39h
INTEGER addr

STRING path

LET path = "C:\$TMPDIRS$”

VARADDR path, addr

DOINTR 21h,39h,0,0,addr$10000h,0,0,0,addr/10000h,0
IF (REGCF() & (REGAX() - 3)) THEN

PRINTLN "Error: Path not found"
ELSE IF (REGCF() & (REGAX() - 5)) THEN

PRINTLN "Error: Access Denied"
ELSE IF (REGCF()) THEN

PRINTLN "Error: Unknown Error"
ELSE

PRINTLN "Directory successfully created..."

ENDIF

See Also

DOINTR Statement, MKADDROQ Function, PEEKB() Function, PEEKDWO Function,

PEEKWO Function, РОКЕВ() Function, POKEDW() Function, POKEW(, Function,

VAROFF Statement, V ARSEG Statement

The PPL Development Kit 339

Chapter 7 PPL Reference

340

VAROFF Statement

Function

Sets a variable to the offset address of another variable.

Syntax

VAROFF src,dest

src The variable to get the offset address of.

dest The variable to store the offset address in.

Remarks

This statement is primarily useful in conjunction with the DOINTR statement. It may be

necessary to give an interrupt the address of a memory location that can be used to store

information. This statement will allow you to get the offset address of a specified variable to

pass to the DOINTR statement.

Examples

' Create subdirectory - DOS function 39h
INTEGER saddr, oaddr
STRING path
LET path = "С: \$ТМРЮОІКЅ"

VARSEG path, saddr
VAROFF path, oaddr
DOINTR 21h,39h,0,0,oaddr,0,0,0,saddr,0
IF (REGCF() & (REGAX() = 3)) THEN

PRINTLN "Error: Path not found"
ELSE IF (REGCF() & (REGAX() = 5)) THEN

PRINTLN "Error: Access Denied"
ELSE IF (REGCF()) THEN

PRINTLN "Error: Unknown Error"
ELSE

PRINTLN "Directory successfully created..."
ENDIF

See Also

DOINTR Statement, MKADDRO Function, PEEKBQ Function, PEEKDWO Function,

PEEKWỌ Function, POKEBQ Function, POKEDWOQ Function, POKEW(Function,

VARADDR Statement, VARSEG Statement

The PPL Development Kit

PPL Reference Chapter 7

VARSEG Statement

Function

Sets a variable to the segment address of another variable.

Syntax

VARSEG src,dest

src The variable to get the segment address of.

dest The variable to store the segment address in.

Remarks

This statement is primarily useful in conjunction with the DOINTR statement. It may be

necessary to give an interrupt the address of a memory location that can be used to store

information. This statement will allow you to get the segment address of a specified variable

to pass to the DOINTR statement.

Examples

' Create subdirectory - DOS function 39h
INTEGER saddr, oaddr
STRING path

LET path = "C:\$TMPDIRS"

VARSEG path,saddr
VAROFF path,oaddr
DOINTR 21h,39h,0,0,oaddr,0,0,0,saddr,0
IF (REGCF() & (REGAX() - 3)) THEN

PRINTLN "Error: Path not found"
ELSE IF (REGCF() & (REGAX() - 5)) THEN

PRINTLN "Error: Access Denied"
ELSE IF (REGCF()) THEN

PRINTLN "Error: Unknown Error"
ELSE

PRINTLN "Directory successfully created..."

ENDIF

See Also

DOINTR Statement, MKADDRO Function, PEEKB() Function, PEEKDW?) Function.

PEEKW(Function, РОКЕВ() Function, POKEDWOQ Function, POKEWOQO Function,

VARADDR Statement, VAROFF Statement

The PPL Development Kit 341

Chapter 7 PPL Reference

VER() Function

Function

Get the version of PPL available.

Syntax

VER ()

No arguments are required

Return Type & Value

INTEGER Returns the version number of PPL running.

Remarks

As time passes, new features will be added to PCBoard and PPL. Of course, in order to utilize

the new features, you must be running a version of PCBoard that supports them. This function
will return the version of PCBoard (and PPL). For PCBoard version 15.0 this value will be

1500. In other words, the major version will be accessable via VER()/100, and the minor

version will be available via VER()96100. Everything documented herein will be available for

all versions greater than or equal to 1500. Future PPL features will be documented with the

required version.

Examples

IF (VER() < 1600) THEN

PRINTLN "PCBoard Version 16.0 required for this PPE file"
END

ENDIF

FOO a,b,c,d,e ' Obviously, this is not a 15.0 statement

See Also

PSAQ Function

342 The PPL Development Kit

PPL Reference Chapter 7

WAIT Statement

Function

Wait for the user to hit ENTER.

Syntax

WAIT

No arguments are required

Remarks

It is often necessary to pause in the display of information and wait for the user to catch up.

This statement allows you to wait for the user to hit ENTER before continuing. It displays

prompt number 418 from the PCBTEXT file for the current language to let the user know

what is expected.

Examples

PRINTLN "Your account has expired!"
PRINTLN "You are about to be logged off"

WAIT

See Also

DISPTEXT Statement, INKEY(Function, MORE Statement, PROMPTSTR Statement

The PPL Development Kit 343

Chapter 7 PPL Reference

344

WAITFOR Statement

Function

Wait for a specific string of text to come in from the modem.

Syntax

WAITFOR str,flag,sec

str Any string expression.

flag A variable to return the status.

sec An integer expression with the maximum number of seconds to wait.

Remarks

This statement can be used to wait for specific replies to questions, responses from terminal

emulators and modem result codes. If the text that is needed isn't received within the specified

time period, or if there is not a remote caller online, flag will be set to FALSE. If the text is

found, then flag will be TRUE. If a remote caller is online this statement will wait up to the

maximum time for the text and return TRUE or FALSE as appropriate. If the caller is local,

it will immediately return FALSE. Also, the text to wait for is not case sensitive. "connect"
will match "CONNECT".

Examples

BOOLEAN flag
KBDCHKOFF

CDCHKOFF

DTROFF

DELAY 18

DTRON

SENDMODEM "ATDT5551212" ' Please don't really dial this number!

WAITFOR "CONNECT",flag,60

IF (!flag) SPRINLN "No connect found in 60 seconds"
CDCHKON

KBDCHKON

See Also

DELAY Statement, МСЕТВҮТЕ() Function, SENDMODEM Statement

The PPL Development Kit

PPL Reference Chapter 7

WHILE/ENDWHILE Statement

Function

Execute one or more statments while a condition is true.

Syntax

WHILE (bexp) statement

-ог-
WHILE (Бехр) DO

statement (s)
ENDWHLLE

bexp Any boolean expression.

statement Any valid PPL statement.

Remarks

Computers are known for their ability to perform monotonous tasks quickly, efficiently, and

accurately. What better way to implement monotony than through a WHILE loop? The

WHILE statement supports two types of loops: logical and block. A logical WHILE loop is

a single statement; if a condition is TRUE, execute a single statement and check again. A

block WHILE loop can be one or more statements. The start of a block WHILE loop is

differentiated from a logical WHILE loop by the DO keyword immediately after the

condition. At some point in the loop some action must be taken that will make the condition

FALSE. If the condition never changes from TRUE to FALSE you have what is known as ап
infinite loop; your computer will appear to be hung, even though it is rapidly executing things

just as fast as it can. Be sure to thoroughly test all programs, but especially programs with

loops!

Examples

INTEGER i

LET і = 0

WHILE (i < 10) GOSUB sub
END

:sub
PRINTLN "i is ",i
INC i

RETURN

INTEGER i
LET i = 0

WHILE (i < 10) DO
PRINTLN "i is ",i
INC i

ENDWHILE

The PPL Development Kit 345

Chapter 7 PPL Reference

See Also

GOSUB Statement, GOTO Statement, FOR/NEXT Statement, IF/ELSEIF/ELSE/ENDIF

Statement, RETURN Statement

346 The PPL Development Kit

PPL Reference Chapter 7

WORDWRAP Constant

Function

Set the word wrap flag in an INPUTSTR or PROMPTSTR statement.

Value

512 = 1000000000b = 10000 = 200h

Remarks

The INPUTSTR and PROMPTSTR statements have the ability to word wrap from one input

statement to the next input statement. If you reach the end of the input field PCBoard will

automatically save the last word from the input field in an internal buffer. The next input

statement will use that saved word if both statements used the WORDWRAP constant. If the

passed variable isn't empty or if an input statement is used that doesn't have the

WORDWRAP flag set then the saved word will not be used.

Examples

STRING s(5)
INTEGER i
CLS
FOR i - 1 TO 5

INPUTSTR "Line "«STRING(i),s(i),0XOE,40,MASK ASCII(),WORDWRAP-NEWLINE
NEXT
CLS
FOR i = 1 ТО5

PRINTLN "Line ",i,": ",s(i)
NEXT

See Also

INPUTSTR Statement, PROMPTSTR Statement

The PPL Development Kit 347

Chapter 7 PPL Reference

WRUNET Statement

Function

Write information to the USERNET file for a specific node.

Syntax

WRUNET node,stat,name,city,oper,br

node An integer expression with the node to update.

stat A string expression with the new node status.

name A string expression with the new node user name.

city A string expression with the new node city.

oper A string expression with the new node operation text.

br A string expression with the new node broadcast text.

Remarks

To facilitate internode communications, a file named USERNET.XXX is maintained with an

entry for each node on the system. This file is used by the BROADCAST command of

PCBoard and to prevent multiple simultaneous logins, among other things. This statement

may be used to change information for the current node (for example, to update operation text

during PPE execution) or other nodes (for example, to broadcast a message).

Examples

RDUNET PCBNODE()

WRUNET PCBNODE(),UN STAT(),UN NAME(),UN CITY(),"Running "“РРЕМАМЕ(),""
RDUNET 1

WRUNET 1,UN STAT(),UN NAME(),UN CITY(),UN OPER(),"Hello there node 1"

See Also

BROADCAST Statement, RDUNET Statement, UN ...() Functions

348 The PPL Development Kit

PPL Reference Chapter 7

WRUSYS Statement

Function

Write a USERS.SYS file out to disk.

Syntax

WRUSYS

No arguments are required

Remarks

Some DOOR applications require a USERS.SYS file to access information about the caller.

This statement allows you to create that file prior to running an application via the SHELL

statement. Should the DOOR make changes to the USERS.SYS file, you should use the

RDUSYS statement after the SHELL to read the changes back into memory. It should be

noted that it is not possible to create the USERS.SYS file with a TPA record with this

statement.

Examples

INTEGER ret

WRUSYS
SHELL FALSE, ret, "MYAPP.EXE",""
RDUSYS

See Also

RDUSYS Statement, SHELL Statement

The PPL Development Kit 349

Chapter 7 PPL Reference

XOR() Function

Function

Calculate the bitwise XOR (exclusive or) of two integer arguments.

Syntax

AND (іехр1,іехр2)

іехрі Any integer expression.

iexp2 Any integer expression.

Return Type & Value

INTEGER Returns the bitwise ХОК of iexp1 and iexp2.

Remarks

This function may be used to toggle selected bits in an integer expression by XORing the

expression with a mask that has the bits to toggle set to 1 and the bits to ignore set to 0.

Examples

' Toggle the bits in the low byte
PRINTLN XOR(1248h,O00FFh)

' Toggle a flag
INTEGER flag

LET flag - XOR(flag,1)

See Also

ANDO Function, NOT() Function, OR() Function

350 The PPL Development Kit

PPL Reference Chapter 7

YEAR() Function

Function

Extracts the year from a specified date.

Syntax

YEAR (dexp)

dexp Any date expression.

Return Type & Value

INTEGER Returns the year from the specified date expression (dexp). Valid return

values are from 1900 to 2079.

Remarks

This function allows you to extract a particular piece of information about a DATE value. in

this case the year of the date.

Examples

PRINTLN "This year is: ",YEAR(DATE())

See Also

DATEQ Function, DAYO Function, DOW() Function, MONTHO Function

The PPL Development Kit 351

Chapter 7

352

PPL Reference

YESCHAR() Function

Function

Get the yes response character for the current language.

Syntax

YESCHAR ()

No arguments are required

Return Type & Value

STRING Returns the yes character for the current language.

Remarks

Support for foreign language yes/no responses can be easily added by using this function to
determine what an affirmative response should be instead of hardcoding the english "Y"
Character.

Examples

STRING ans

LET ans - YESCHAR()
INPUTSTR "Run program now",ans,@X0E,1,"",AUTO+YESNO
IF (ans - NOCHAR()) END

See Also

NOCHARO Function, YESNO Constant

The PPL Development Kit

PPL Reference Chapter 7

YESNO Constant

Function

Set the international yes/no response flag in ап INPUTSTR or PROMPTSTR statement.

Value

16384 = 100000000000000b = 400000 = 4000h

Remarks

Тһе INPUTSTR and PROMPTSTR statements have the ability to allow a yes/no response to

be entered in addition to any valid characters passed to the statement. The extra characters

allowed are Y/N (or whatever characters were defined for the current language; spanish would

use S/N, french would use O/N, etc). Note that you do not need to pass any valid characters to

use this flag; regardless of the other legal characters the international Y/N characters will be

allowed.

Examples

STRING ans

LET ans = NOCHAR()
INPUTSTR "Run program now",ans,@X0E,1,"",AUTO+YESNO
IF (ans = NOCHAR()) END

See Also

INPUTSTR Statement, NOCHAR(Function, PROMPTSTR Statement, ҮЕЅСНАКО

Function

The PPL Development Kit 353

Chapter 7 PPL Reference

354 The PPL Development Kit

Index

A

ABORT(), 57

ABS(), 58

ADJTIME, 59

АМО, 60

ANSIONDQ), 61

ANSIPOS, 62
Application

Installation, 12

Testing, 14

ASC(), 63
Assignment

LET, 178
AUTO, 64

B2W(), 65

BACKUP, 66

Basics, 47

BELL, 67

BLT, 68

BOOLEAN, 69

Branching

ELSE, 156

ELSEIF, 156

ENDIF, 156

ENDWHILE, 345

FOR, 128
GOSUB, 146
GOTO, 147
IF, 156
NEXT, 128
RETURN, 251

WHILE, 345

BROADCAST, 70

BYE, 71

С

CALL, 72
CALLID(), 73

CALLNUM(), 74

CARRIER(), 75

CCTYPE(), 76

CDCHKOFF, 77

CDCHKON, 78

CDON(), 79

CHAT, 80

CHRO, 81

CLOSECAP, 82

CLREOL, 83

CLS, 84

Code Statements, 48

COLOR, 85

Color Control

COLOR, 85

CURCOLORQO), 88

DEFCOLOR, 97

DEFCOLOR(), 98

Commands, 12, 29

Comments, 47

Compiler

Errors, 20

Exit Codes, 23

Warnings, 19

Compiling Source Code, 11, 18

Conference

CONFFLAG, 86

CONFUNFLAG, 87

CURCONF(), 89

F_EXP, 134

Е MW, 135

F REG, 136

F SEL, 137

F SYS, 138

О INCONFQ, 312

CONFFLAG, 86

CONFUNFLAG, 87

Connection Information

CALLIDO, 73

CALLNUM(), 74

CARRIER(), 75

LOGGEDONO(O, 182

MODEM(), 198

ONLOCAL(), 211
Constant List, 55

Constants, 49

CPU Access

DOINTR, 107
MKADDR(), 196
PEEKB(), 223
PEEKDWO), 224
PEEKWỌ), 225
POKEB, 226
POKEDW, 227
POKEW, 228
REGAH(), 245
КЕСАЦ), 245
REGAX(), 245
REGBH(), 245
REGBL(), 245
REGBX(), 245
REGCF(), 245
REGCH(), 245
REGCL(), 245
REGCX(), 245
REGDH(), 245
REGDIQ, 245
REGDL(), 245
REGDS(), 245
REGDX(), 245
REGES(), 245
REGF(), 245
REGSI(), 245
VARADDR, 339
VAROFF, 340
VARSEG, 341

Creating Source Code, 11

Credit Cards

CCTYPE(), 76
FMTCC(), 125
VALCC(, 336

CURCOLOR(), 88

CURCONF(), 89
CURSEC(), 90

ANSIPOS, 62

Index

BACKUP, 66

FORWARD, 129

GETX, 143
GETY, 144

D

DATE, 91
Date

DATEQ, 92

DAY(), 93

DOW(), 108
MKDATE(), 197

MONTH(), 200
VALDATE(), 337
ҮЕАК(), 351

DATE(), 92

DAY(), 93
DBGLEVEL, 94

DBGLEVEL(), 95
Debugging

DBGLEVEL, 94

DBGLEVEL(), 95
LOG, 181

DEC, 96
DEFCOLOR, 97
DEFCOLOR(), 98
DEFS, 99
DELAY, 100
DELETE, 101
DELUSER, 102

Developing PPL Applications, 11

DIR, 103

DISPFILE, 104

DISPFILE Flags

GRAPH, 149

LANG, 174

SEC, 258
Display Files, 13, 39

Display Menus, 14, 42

DISPSTR, 105

DISPTEXT, 106

DISPTEXT Flags

BELL, 67
LFAFTER, 179
LFBEFORE, 180
LOGIT, 183
LOGITLEFT, 184
NEWLINE, 204

DOINTR, 107
DOWO), 108
DTROFF, 109
DTRON, 110

E

ECHODOTS, 111

ELSE, 156

ELSEIF, 156

END, 112

ENDIF, 156

ENDWHILE, 345

ERASELINE, 113

Errors, 20

EXISTQ, 114

Exit Codes, 23

Expressions, 49

Ғ

F EXP, 134

F MW, 135

F REG, 136

F SEL, 137

F SYS, 138

FALSE, 115

FAPPEND, 116

FCL, 117

FCLOSE, 118

FCREATE, 119

ҒЕКК(), 120

FGET, 121

FIELDLEN, 122

File

DELETE, 101

EXIST(), 114

FAPPEND, 116

FCLOSE, 118

FCREATE, 119

FERR(), 120
FGET, 121

FILEINF(), 123

FOPEN, 127

FPUT, 130

FPUTLN, 130

FPUTPAD, 131

FREWIND, 133

READLINE(, 244

RENAME, 247

FILEINF(, 123

FMTCC(), 125

FNS, 126

FOPEN, 127

FOR, 128

FORWARD, 129

FPUT, 130

FPUTLN, 130

FPUTPAD, 131

FRESHLINE, 132

FREWIND, 133

Function List, 55

Functions, 50

G

GETENV(), 139
GETTOKEN, 140
GETTOKEN(), 141
GETUSER, 142
СЕТХ(), 143

СЕТҮ(), 144

GOODBYE, 145
GOSUB, 146
GOTO, 147

GRAFMODE(), 148
GRAPH, 149
Graphics

ANSION(), 61
GRAFMODE(), 148

Index

GUIDE, 150

H

HANGUP, 15]

Hello, World!, 27

HELPPATH(), 152

HIGHASCII, 153

HOUR(), 154

И)

125(), 155

ІЕ, 156

ІМС, 158

INKEYO, 159

INPUT, 160

Input

INPUT, 160
INPUTCC, 161
INPUTDATE, 161

INPUTINT, 161
INPUTMONEY, 161

INPUTSTR, 163
INPUTTEXT, 165
INPUTTIME, 161
INPUTYN, 161

PROMPT, 234

Input Flags

AUTO, 64
ECHODOTS, 111
ERASELINE, 113
FIELDLEN, 122

GUIDE, 150
HIGHASCII, 153
LFAFTER, 179

LFBEFORE, 180
NEWLINE, 204
NOCLEAR, 209

STACKED, 269
UPCASE, 291
WORDWRAP, 347

YESNO, 353

Input Masks

MASK_ALNUM(), 187

MASK ALPHA(), 187

MASK ASCII(), 187

MASK ЕП,ЕО, 187

MASK NUM(), 187

MASK PATH(), 187

МАЅК РМО), 187

INPUTCC, 161

INPUTDATE, 161

INPUTINT, 161

INPUTMONEY, 161

INPUTSTR, 163

INPUTTEXT, 165

INPUTTIME, 161

INPUTYN, 161

Installing PPLC, 7

Installing Your Application, 12

INSTR(), 166
INTEGER, 167
Interactive Welcome Screens, 39

Internationalization

МОСНАКО(), 208
YESCHAR(), 352

Introduction to PPL, 3

JOIN, 168

KBDCHKOFF, 169
KBDCHKON, 170
KBDFILE, 171
KBDSTUFF, 172
Keyboard

INKEY(), 159
KBDFILE, 171
KBDSTUFF, 172
KINKEY(), 173
MGETBYTE(), 190
MINKEY(), 193

KINKEY(), 173

L

LANG, 174

LANGEXT(), 175
LEFT(), 176

LENO), 177

LET, 178

LFAFTER, 179

LFBEFORE, 180
LOG, 181

LOGGEDON(), 182

LOGIT, 183

LOGITLEFT, 184

Logon Language Prompt, 37

LOWER(O), 185

LTRIM(), 186

MASK ALNUMY() 187

MASK_ALPHA(), 187

MASK ASCII(), 187

MASK FILE(, 187

MASK МОМО, 187

MASK РАТНО, 187

MASK_PWD(), 187

MAXNODE(), 188

Menus, 14

MESSAGE, 189

MGETBYTE(), 190

МІРІ), 191

MINQ, 192

MINKEY(), 193

MINLEFT(), 194

MINON(), 195

Miscellaneous Constants

DEFS, 99

FALSE, 115

TRUE, 289

MKADDRY(), 196

MKDATE(), 197

Index

Modem

CDON(), 79

DTROFF, 109

DTRON, 110

SENDMODEM, 260

WAITFOR, 344

MODEM!YO|) 198

MONEY, 199

МОМТНО), 200

MORE, 201

MPRINT, 202

MPRINTLN, 202

N

NC, 203

NEWLINE, 204, 205

NEWLINES, 206

NEWPWD, 207

NEXT, 128

NOCHARQ, 208

NOCLEAR, 209

Node

RDUNET, 242

UN CITY() 290

UN МАМЕ(), 290

UN OPER(), 290
UN STATY(), 290
WRUNET, 348

Node Specific Display Files, 39

МОТО, 210

Numerical

ABS(), 58
ANDO), 60

B2W(), 65

DEC, 96

INC, 158

МОТО), 210

ОҚО), 214

RANDOM(), 241

XOR(), 350

O

O_RD, 215
O_RW, 216
O_WR, 217
ONLOCAL(), 211
Open Flags

O_RD, 215
O_RW, 216
O_WR, 217

OPENCAP, 212

Operator Page, 30

Operators, 51

Precedence, 52

OPTEXT, 213
OR(), 214

P

PAGEOFF, 218

PAGEON, 219

PAGESTAT(Q, 220

Password Expiration Warning, 36

PCBDAT(), 221

PCBNODE(), 222

PCBOARD.DAT Information

HELPPATH(), 152

PCBDATDO, 221

PCBNODE(), 222

SLPATH(O), 265

SYSOPSEC(), 276

TEMPPATH(), 281

PCBoard Commands

BLT, 68

BROADCAST, 70

BYE, 71

DIR, 103

GOODBYE, 145

JOIN, 168

MESSAGE, 189

QUEST, 240

PCBTEXT Display Prompts, 13, 36

PEEKB(), 223

PEEKDW(), 224
PEEK W(), 225
POKEB, 226
POKEDW, 227
POKEW, 228
POP, 229
PPE Files

Commands, 12

Display Files, 13

Display Menus, 14

PCBTEXT Display

Prompts, 13

Script Questionnaires, 13

PPE Information

PPENAME(), 231
PPEPATH(), 232

PPENAME(), 231
PPEPATH(), 232

PPL

Commands, 29

Developing Applications,
П

Display Files, 39

Display Menus, 42

Introduction, 3

PCBTEXT Display

Prompts, 36

Reference, 55

Script Questionnaires, 34

Structure, 47

Tutorial, 27

PPLC

Errors, 20

Exit Codes, 23

Installing, 7

Running, 17

Using, 17

Warnings, 19

PRINT, 233

PRINTLN, 233

Process

CALL, 72

Index

END, 112

RDUSYS, 243
SHELL, 261

STOP, 271

WRUSYS, 349
PROMPTSTR, 234
PSA(), 236
PUSH, 237
PUTUSER, 239

Q

QUEST, 240

R

RANDOM(), 241
RDUNET, 242
RDUSYS, 243
READLINE(), 244
REGAH(), 245
REGAL(), 245
REGAX(), 245
REGBH(), 245
REGBL(), 245
REGBX(), 245
REGCF(), 245
REGCH(), 245
КЕССІЦ), 245
REGCX(), 245
REGDH(), 245
КЕС), 245
REGDL(), 245
REGDS(), 245
REGDX(), 245
REGES(), 245
REGF(), 245
REGSI(), 245
RENAME, 247
REPLACE(), 248
RESETDISP, 249
RESTSCRN, 250
RETURN, 251

RIGHT(), 252
КТКІМО, 253

Running PPLC, 17

5

S. DB, 277
S DN, 278
S DR, 279
S DW, 280
S210) 254
SAVESCRN, 255
Screen

ABORTO, 57
CLOSECAP, 82
CLREOL, 83
CLS, 84
DISPFILE, 104
DISPSTR, 105
DISPTEXT, 106
FCL, 117
FNS, 126
FRESHLINE, 132
MORE, 201
MPRINT, 202
MPRINTLN, 202
NC, 203
NEWLINE, 205
NEWLINES, 206
OPENCAP, 212
OPTEXT, 213
PRINT, 233
PRINTLN, 233
RESETDISP, 249
RESTSCRN, 250
SAVESCRN, 255
SHOWOFF, 262
SHOWON, 263
SHOWSTATO, 264
SPRINT, 268
SPRINTLN, 268
STARTDISP, 270
WAIT, 343

Script Questionnaires, 13, 34

SCRTEXTY(), 256

SEC, 258

SEC(), 259

SENDMODEM, 260

Share Flags

S DB, 277

S DN, 278

S DR, 279

S DW, 280

SHELL, 261

SHOWOFF, 262

SHOWON, 263

5НОУУ5ТАТО, 264

SLPATHO, 265

SOUND, 266

Source Code

Compiling, 11, 18

Creating, 11

Specifying the File to

PPLC, 17

SPACE(), 267
Specifying the Source Code File, 17

SPRINT, 268

SPRINTLN, 268

Stack

POP, 229

PUSH, 237

STACKED, 269

Start, 33

STARTDISP, 270

Statement List, 56

Statements

Code, 48

Variable Declaration. 47

STOP, 271
STRING, 272
String

ASC(), 63
CHR(), 81
1280), 155
ГЧ5ТК(), 166
LEFT(), 176

Index

LEN(), 177
LOWER(), 185
LTRIM(), 186
MID(), 191
REPLACE(), 248
RIGHT(), 252
RTRIM(), 253
S210, 254
SCRTEXT(), 256
SPACE(), 267
STRING(), 273
STRIP(), 274
STRIPATX(), 275
TRIMO), 288
UPPER(), 292

STRING), 273

ЅТКІР(), 274

STRIPATX(), 275

Structure, 47

Sub-Expressions, 50

SysOp Chat

CHAT, 80

PAGEOFF, 218

PAGEON, 219

PAGESTAT(), 220

SYSOPSEC(), 276
System

T

CDCHKOFF, 77

CDCHKON, 78

GENENV(), 139
HANGUP, 151

KBDCHKOFF, 169
KBDCHKON, 170

MAXNODE(), 188

PSA(), 236

SOUND, 266
VERO), 342

ТЕМРРАТНО, 281
Testing Your Application, 14

TIME, 282

Time

ADJTIME, 59

DELAY, 100

НООКО, 154

MIN(), 192

ЗЕС(), 259

ТІМЕО, 283

TIMEAP(), 284

УАТТІМЕ(), 338

TIME(), 283
TIMEAP(), 284
TOKCOUNTO(), 285
TOKENIZE, 286
Tokens

GETTOKEN, 140
GETTOKEN(), 141

ТОКСООМТО, 285

TOKENIZE, 286
TOKENSTR(), 287

TOKENSTRO), 287

ТКІМО, 288

TRUE, 289

Tutorial, 27

Display Menus, 42

Hello, World!, 27

Interactive Welcome

Screens, 39

Logon Language Prompt,

37

Node Specific Display
Files, 39

Operator Page, 30

Password Expiration

Warning, 36

Script Questionnaire, 34
Start, 33

Type List, 56

Types

BOOLEAN, 69
DATE, 91

INTEGER, 167

MONEY, 199

STRING, 272

TIME, 282

U

О ADDR(), 293
U ALIAS, 294
О BDL(), 295
U_BDLDAY(), 296
U_BDPHONE, 297
U_BUL(, 298
U_CITY, 299
U_CLS, 300
U CMNTI, 301
О CMNT2, 302
U DEF79, 303
U EXPDATE, 304
U EXPERT, 305
U EXPSEC, 306
О FDLQ, 307
U FSE, 308
U FSEP, 309
U_FUL(, 310
U_HVPHONE, 311
U_INCONF(), 312
U_LDATE(), 313
U_LDIRO, 314
U_LOGONS(), 315
U_LONGHDR, 316
U_LTIME(), 317
U_MSGRD(), 318
U MSGWR(), 319
U NAME), 320
U_NOTES(), 321
U PAGELEN, 322
U PWD, 323
U PWDEXP, 324
U PWDHIST(), 325
U_PWDLC(), 326
U_PWDTC(), 327
U_RECNUM(), 328
U_SCROLL, 329
U_SEC, 330
U_STAT(), 331

Index

U_TIMEON(), 333

U_TRANS, 334

U_VER, 335

UN_CITY(), 290

UN_NAME(), 290

UN_OPER(), 290

UN 5ТАТО, 290

UPCASE, 291

UPPER(), 292

User Information

CURSEC(), 90
DELUSER, 102
GETUSER, 142
LANGEXT(), 175
MINLEFT(), 194
MINON(), 195
NEWPWD, 207
PUTUSER, 239
О ADDRQ, 293
U ALIAS, 294
U_BDLO, 295
U_BDLDAY(), 296
U_BDPHONE, 297
О BUL(), 298
U CITY, 299
U CLS, 300
U CMNTI, 301
U CMNT2, 302
U DEF79, 303
U EXPDATE, 304
U EXPERT, 305
U EXPSEC, 306
О FDLQ, 307
U FSE, 308
U FSEP, 309
О FULQ, 310
U HVPHONE, 311
U_INCONF(), 312
U_LDATE(, 313
U LDIRQ, 314
U_LOGONS(), 315
U LONGHDR, 316
U_LTIME(), 317

U_MSGRD(), 318
U_MSGWR(), 319
U_NAME(), 320
U_NOTES(), 321
U_PAGELEN, 322
U_PWD, 323
U PWDEXP, 324
U_PWDHIST(), 325
U_PWDLC(), 326
U_PWDTC(), 327
О КЕСМОМО, 328
U SCROLL, 329
U SEC, 330
О STATO, 331
U ТІМЕОМ(), 333
U TRANS, 334
U VER, 335

Using PPLC, 17

V

VALCCY), 336

VALDATE(), 337
VALTIMEYQ, 338
VARADDR, 339
Variable Declaration Statements, 47

Variable List, 56

VAROFF, 340

VARSEG, 341

VER(), 342

W

WAIT, 343

WAITFOR, 344

Wamings, 19

WHILE, 345

WORDWRAP, 347

WRUNET, 348

WRUSYS, 349

X

XOR(), 350

Y

YEAR(), 351
YESCHAR(), 352
YESNO, 353

