%% LyX 2.3.7 created this file. For more info, see http://www.lyx.org/. %% Do not edit unless you really know what you are doing. \documentclass[english]{article} \usepackage[T1]{fontenc} \usepackage[latin9]{inputenc} \usepackage{amsmath} \usepackage{babel} \begin{document} \title{The Cosine of 3 Degrees} \author{Amit Yaron} \date{July 1, 2021} \maketitle \begin{abstract} Wow, I saw today on YouTube that there's a video clip explaining how to calculate the cosine of 3 degrees. The clip is 26 minutes long with ads. Now, there is a famous exercise, which is to calculte the sine of 18 degrees. Calculating the sine and cosine of 15 degrees is easier thanks to the famoues sines and cosines of 30, 45 and 60 degrees. Let's get started. \end{abstract} \paragraph{First let us calculate the sine and cosine of 15 degrees:} \[ \cos(15^{\circ})=\cos(45^{\circ}-30^{\circ})=\cos(45^{\circ})(\cos(30^{\circ})+\sin(45^{\circ})\sin(30^{\circ})=\frac{\sqrt{2}}{2}(\frac{\sqrt{3}}{2}+\frac{1}{2})=\frac{\sqrt{6}+\sqrt{2}}{4} \] and \[ \sin(15^{\circ})=\sin(45^{\circ}-30^{\circ})=\sin(45^{\circ})\cos(30^{\circ})-\cos(45^{\circ})\sin(30^{\circ})=\frac{\sqrt{2}}{2}(\frac{\sqrt{3}}{2}-\frac{1}{2})=\frac{\sqrt{6}-\sqrt{2}}{4} \] \paragraph*{Now, let us calculate the cosine and sine of 18 degrees} \begin{multline*} 360=5\cdot72=2\cdot72+3\cdot72\Rightarrow\\ \cos(2\cdot72^{\circ})=\cos(3\cdot72^{\circ}) \end{multline*} Now, let $x=72^{\circ}$ Then use the following identities: \[ \cos(2x)=\cos^{2}(x)-\sin^{2}(x)=\cos^{2}(1)-[1-\cos^{2}(x)]=2\cos^{2}(x)-1 \] and \begin{multline*} \cos(3x)=\cos(2x)\cos(x)-\sin(2x)\sin(x)=\\ =[2\cos^{2}(x)-1]\cos(x)-2\sin^{2}(x)\cos(x)=\\ =[2\cos^{2}(x)-1-2\sin^{2}(x)]\cos(x)=\\ =[2\cos^{2}(x)-1-2+2\cos^{2}(x)]\cos(x)=\\ =[4\cos^{2}(x)-3]\cos(x)=4\cos^{3}(x)-3\cos(x) \end{multline*} From the two identities: \begin{multline*} 2\cos^{2}(x)-1=4\cos^{3}(x)-3\cos(x)\Rightarrow\\ \Rightarrow4\cos^{3}(x)-2\cos^{2}(x)-3\cos(x)+1=0 \end{multline*} Let $t=\cos(x)$ : \begin{multline*} 4t^{3}-2t^{2}-3t+1=0\Rightarrow\\ \Rightarrow4t^{3}-4t^{2}+2t^{2}-2t-t+1=0\Rightarrow\\ \Rightarrow(t-1)(4t^{2}+2t-1)=0 \end{multline*} but $t=\cos(72^{\circ})\neq\cos(0^{\circ})=1$, so let us find other values using the quadratic equation: \begin{multline*} 4t^{2}+2t-1=0\Rightarrow\\ \Rightarrow t=\frac{-2\pm\sqrt{2^{2}+4\cdot4\cdot1}}{8}=\frac{-2\pm\sqrt{20}}{8}=\frac{-2\pm2\sqrt{5}}{8}=\frac{-1\pm\sqrt{5}}{4} \end{multline*} Because $\cos(72^{\circ})>0$: \begin{multline*} \sin(18^{\circ})=\cos(72^{\circ})=\frac{\sqrt{5}-1}{4} \end{multline*} The sine is: \begin{multline*} \cos(18^{\circ})=\sqrt{1-\sin^{2}(18^{\circ})}=\\ =\sqrt{1-(\frac{\sqrt{5}-1}{4})^{2}}=\\ =\sqrt{1-\frac{6-2\sqrt{5}}{16}}=\\ =\sqrt{\frac{10+2\sqrt{5}}{16}}=\\ =\frac{\sqrt{10+2\sqrt{5}}}{4}\\ \end{multline*} Now, the requested cosine can be expressed using radicals: \begin{multline*} \cos(3^{\circ})=\cos(18^{\circ}-15^{\circ})=\cos(18^{\circ})\cos(15^{\circ})+\sin(18^{\circ})\cos(15^{\circ})=\\ =(\frac{\sqrt{10+2\sqrt{5}}}{4})(\frac{\sqrt{6}+\sqrt{2}}{4})+(\frac{\sqrt{5}-1}{4})(\frac{\sqrt{6}-\sqrt{2}}{4})=\\ =\frac{\sqrt{60+12\sqrt{5}}+\sqrt{20+4\sqrt{5}}+\sqrt{30}-\sqrt{6}-\sqrt{10}+\sqrt{2}}{16} \end{multline*} \end{document}