%% LyX 2.3.4.2 created this file. For more info, see http://www.lyx.org/. %% Do not edit unless you really know what you are doing. \documentclass[english]{article} \usepackage[T1]{fontenc} \usepackage[latin9]{inputenc} \usepackage{color} \usepackage{amssymb} \usepackage{babel} \begin{document} \title{Factor $x^{10}+x^{5}+1$} \author{Amit Yaron} \maketitle You may' see a lot of such equations on YouTube. The way to factor those polynomial is to use the identity $x^{3}-1=(x-1)(x^{2}+x+1)$ Let us start by subtracting and adding $x^{7}$: $x^{10}+x^{5}+1=x^{10}-x^{7}+x^{7}+x^{5}+1$ Now, to continue, let us do the same with $x^{4}$and $x^{2}$: $x^{10}+x^{5}+1=x^{10}-x^{7}+x^{7}-x^{4}+x^{5}-x^{2}+x^{4}+x^{2}+1=$ $=(x^{3}-1)x^{7}+(x^{3}-1)x^{4}+(x^{3}-1)x^{2}+x^{4}+x^{2}+1=$ $=(x^{3}-1)(x^{7}+x^{4}+x^{2})+(x^{4}+x^{2}+1)\quad(1)$ Now, what is $x^{4}+x^{2}+1$? Let us add and subtract $x^{2},$then use the formula for difference of squares: $x^{4}+x^{2}+1=x^{4}+2x^{2}+1-x^{2}=(x^{2}+1)^{2}-x^{2}=(x^{2}+x+1)(x^{2}-x+1)$ Plug it into (1): $x^{10}+x^{5}+1=(x-1)(x^{2}+x+1)(x^{7}+x^{4}+x^{2})+(x^{2}+x+1)(x^{2}-x+1)=$ $=(x^{2}+x+1)[(x-1)(x^{7}+x^{4}+x^{2})+x^{2}-x+1]=$ $=(x^{2}+x+1)(x^{8}-x^{7}+x^{5}-x^{4}+x^{3}-x^{2}+x^{2}-x+1)=$ $=(x^{2}+x+1)(x^{8}-x^{7}+x^{5}-x^{4}+x^{3}-x+1)$ You can factor it better if you switch to complex variables. Let us substitute: $u=x^{5}$ Then, $x^{10}+x^{5}+1=u^{2}+u+1=u^{2}+2u\cdot\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1=(u+\frac{1}{2})^{2}+\frac{3}{4}=$ $=(u+\frac{1}{2})+(\frac{\sqrt{3}}{2})^{2}=[u-(-\frac{1}{2}+\frac{\sqrt{3}i}{2})][u-(-\frac{1}{2}-\frac{\sqrt{3}i}{2})]=$ $=[u-(\cos(\frac{2\pi}{3})+i\sin(\frac{2\pi}{3}))][u-(\cos(-\frac{2\pi}{3})+i\sin(-\frac{2\pi}{3}))]$ So, the zeros are: $\cos(\pm\frac{2\pi}{15}+\frac{2n\pi}{5})+i\sin(\pm\frac{2\pi}{15}+\frac{2n\pi}{5})\quad\forall n\in\mathbb{Z}$ Now, the sum of a complex number and its conjugate is real. The same goes for their product, so: $[x-(\cos(\frac{2\pi}{15}+\frac{2n\pi}{5})+i\sin(\frac{2\pi}{15}+\frac{2n\pi}{5}))][x-(\cos(-\frac{2\pi}{15}-\frac{2n\pi}{5})+i\sin(-\frac{2\pi}{15}-\frac{2n\pi}{5}))]=$ $=[x-(\cos(\frac{2\pi}{15}+\frac{2n\pi}{5})+i\sin(\frac{2\pi}{15}+\frac{2n\pi}{5}))][x-(\cos(\frac{2\pi}{15}+\frac{2n\pi}{5})-i\sin(\frac{2\pi}{15}+\frac{2n\pi}{5}))]=$ $=[x^{2}-2\cos(\frac{(2+6n)\pi}{15})x+1]$ Thus, the complete factorization over $\mathbb{R}$ is: $x^{10}+x^{5}+1=\prod\limits _{n=0}^{5}[x^{2}-2\cos(\frac{(2+6n)\pi}{15})+1]$ That one was not included in the YouTube video, and is \textbf{\textcolor{red}{ad-free}}! \end{document}