%% LyX 2.3.4.2 created this file. For more info, see http://www.lyx.org/. %% Do not edit unless you really know what you are doing. \documentclass[english]{article} \usepackage[T1]{fontenc} \usepackage[latin9]{inputenc} \usepackage{color} \usepackage{amsmath} \usepackage{amssymb} \usepackage{babel} \begin{document} \title{Is $4\sqrt{4-2\sqrt{3}}+\sqrt{97-56\sqrt{3}}$ an integer?} \maketitle That's a question I've found in YouTube's homepage, where I can find a lot of math videos. I do not want to watch that video because of ads that interrupt the short lecture's flow. Besides, I know how to deal with a square root inside a square root. If you don't see that $4-2\sqrt{3}=1-2\sqrt{3}+3=(1-\sqrt{3})^{2}$, you can find $a,b$ such that: 1. $(a+b\sqrt{3})^{2}=4-2\sqrt{3}$ 2. a,b are not multiples of $\sqrt{3}$\\ Let us expand: $a^{2}+2ab\sqrt{3}+3b^{2}=4-2\sqrt{3}\Rightarrow$ $\Rightarrow\begin{cases} a^{2}+b^{2} & =4\\ 2ab & =-2 \end{cases}$\\ Now, from the 2nd equation: $b=-\frac{1}{a}$\\ Let us plug it into the 1st equation: $a^{2}+\frac{3}{a^{2}}=4\Rightarrow$ $\Rightarrow a^{4}+3=4a^{2}\Rightarrow$ $\Rightarrow a^{4}-4a^{2}+3=0\Rightarrow$ $\Rightarrow a^{4}-4a^{2}+4-4+3=0\Rightarrow$ $\Rightarrow(a^{2}-2)^{2}-1=0\Rightarrow$ $\Rightarrow(a^{2}-1)(a^{2}-3)=0$\\ The solution $a^{2}=3$ is unwanted because then $a=\pm\sqrt{3},$so let us take $a^{2}=1\Rightarrow a=\pm1$. Let us now determine if $a$ is positive or negative: $a=1\Rightarrow b=-\frac{1}{a}=-1\Rightarrow a+\sqrt{3}b=1-\sqrt{3}<0$; this cannot be a square root, so we'll take: $a=-1\Rightarrow b=1\Rightarrow a+\sqrt{3}b=-1+\sqrt{3}>0$ Great!\\ Now, $4\sqrt{4-2\sqrt{3}}=-4+4\sqrt{3}$\\ So, now let us check if there exists $c\in\mathbb{Z}$, such that: 1. $(c-4\sqrt{3})^{2}=97-56\sqrt{3}$ 2. $c-4\sqrt{3}>0$\\ OK, let us solve (1): $c^{2}-8c\sqrt{3}+48=97-56\sqrt{3}\Rightarrow$ $\Rightarrow c^{2}-8c\sqrt{3}=49-56\sqrt{3}\Rightarrow$\\ If we take $c=7$, we'll get: $\begin{cases} c^{2} & =49\\ -8c\sqrt{3} & =-56\sqrt{3} \end{cases}\Rightarrow$ $\Rightarrow c^{2}-8c\sqrt{3}=49-56\sqrt{3}$\\ This solves $(c-4\sqrt{3})^{2}=97-56\sqrt{3}$ and $7-4\sqrt{3}>0$ because $7^{2}=49>48=(4\sqrt{3})^{2}$\\ Now, if we add the 2 square roots: $4\sqrt{4-2\sqrt{3}}+\sqrt{97-56\sqrt{3}}=-4+4\sqrt{3}+7-4\sqrt{3}=3$ \textbf{\textcolor{red}{An integer!}} \end{document}