%% LyX 2.3.4.2 created this file. For more info, see http://www.lyx.org/. %% Do not edit unless you really know what you are doing. \documentclass[english]{article} \usepackage[T1]{fontenc} \usepackage[latin9]{inputenc} \usepackage{amsmath} \usepackage{amssymb} \usepackage{babel} \begin{document} \title{Raising a Matrix to Power n} \author{Amit Yaron} \date{Aug 1, 2021} \maketitle Hello, another one from YouTube. The reason I want to solve it is that the solver is Michael Penn, a serious math problem solver. So, the matrix to be raised to power $n\in\mathbb{N}$ is: \begin{multline*} A=\begin{pmatrix}4 & -\sqrt{5}\\ 2\sqrt{5} & -3 \end{pmatrix} \end{multline*} Raisning matrix A to power n is easy if matrix A is diagonalizabe, i.e. there exists a matrix M. such that: \begin{multline*} M^{-1}AM \end{multline*} is diagonal. To find if it is, let us calculate A's characteristic polynomial $P_{A}(t)$: \begin{multline*} P_{A}(t)=det(tI-A)=det\begin{pmatrix}t-4 & \sqrt{5}\\ -2\sqrt{5} & t+3 \end{pmatrix}=(t-4)(t+3)-\sqrt{5}(-2\sqrt{5})=\\ =t^{2}-t-12+10=t^{2}-t-2=(t-2)(t+1) \end{multline*} So, we have a distinct quadratic polynomial with two distinct zeros, thus the matrix A is diagonizable. The 2 eigen-values of matrix A are: \begin{multline*} \lambda_{1}=2,\ \lambda_{2}=-1 \end{multline*} So, there exist a diagonal matrix D and a square matrix M, such that: \begin{align*} D=M^{-1}AM & =\begin{pmatrix}\begin{array}{rr} 2 & 0\\ 0 & -1 \end{array}\end{pmatrix}\Rightarrow\\ \Rightarrow & MD=AM \end{align*} Now, let us find the elements of M, by solving systems of linear equations. Let \begin{multline*} M=\begin{pmatrix}\begin{array}{rr} m_{11} & m_{12}\\ m_{21} & m_{22} \end{array}\end{pmatrix} \end{multline*} So, \begin{multline*} AM=MD=\begin{pmatrix}\begin{array}{rr} 2m_{11} & -m_{12}\\ 2m_{21} & -m22 \end{array}\end{pmatrix} \end{multline*} System 1: \begin{multline*} \begin{pmatrix}\begin{array}{rr} 4 & -\sqrt{5}\\ 2\sqrt{5} & -3 \end{array}\end{pmatrix}\begin{pmatrix}m_{11}\\ m_{21} \end{pmatrix}=\begin{pmatrix}2m_{11}\\ 2m_{21} \end{pmatrix}\Rightarrow\\ \Rightarrow\begin{cases} 4m_{11}-\sqrt{5}m_{21} & =2m_{11}\\ 2\sqrt{5}m_{11}-3m_{21} & =2m_{21} \end{cases}\Rightarrow\\ \Rightarrow\begin{cases} 2m_{11}-\sqrt{5}m_{21} & =0\\ 2\sqrt{5}m_{11}-5m_{21} & =0 \end{cases} \end{multline*} From both equations, we can get that: \begin{multline*} 2m_{11}-\sqrt{5}m_{21}=0\Rightarrow2m_{11}=\sqrt{5}m_{21}\Rightarrow m_{11}=\frac{\sqrt{5}}{2}m_{21} \end{multline*} So, let us take: \begin{multline*} \begin{cases} m_{11} & =\frac{\sqrt{5}}{2}\\ m_{21} & =1 \end{cases} \end{multline*} System 2: \begin{multline*} \begin{pmatrix}\begin{array}{rr} 4 & -\sqrt{5}\\ 2\sqrt{5} & -3 \end{array}\end{pmatrix}\begin{pmatrix}\begin{array}{l} m_{12}\\ m_{22} \end{array}\end{pmatrix}=\begin{pmatrix}\begin{array}{l} -m_{12}\\ -m_{22} \end{array}\end{pmatrix}\Rightarrow\\ \Rightarrow\begin{cases} 4m_{12}-\sqrt{5}m_{22} & =-m_{12}\\ 2\sqrt{5}m_{12}-3m_{22} & =-m_{22} \end{cases}\Rightarrow\\ \Rightarrow\begin{cases} 5m_{12}-\sqrt{5}m_{22} & =0\\ 2\sqrt{5}m_{12}-2m_{22} & =0 \end{cases} \end{multline*} From both equation, we get that: \begin{multline*} m_{22}=\sqrt{5}m_{12} \end{multline*} So, let us take: \begin{multline*} \begin{cases} m_{12} & =1\\ m_{22} & =\sqrt{5} \end{cases} \end{multline*} Thus, our matrix is: \begin{multline*} M=\begin{pmatrix}\begin{array}{rr} m_{11} & m_{12}\\ m_{21} & m_{22} \end{array}\end{pmatrix}=\begin{pmatrix}\begin{array}{rr} \frac{\sqrt{5}}{2} & 1\\ 1 & \sqrt{5} \end{array}\end{pmatrix}\Rightarrow\\ \Rightarrow M^{-1}=\frac{adj(M)}{det(M)}=\frac{\begin{pmatrix}\begin{array}{rr} \sqrt{5} & -1\\ -1 & \frac{\sqrt{5}}{2} \end{array}\end{pmatrix}}{\frac{3}{2}}=\begin{pmatrix}\begin{array}{rr} \frac{2\sqrt{5}}{3} & -\frac{2}{3}\\ -\frac{2}{3} & \frac{\sqrt{5}}{3} \end{array}\end{pmatrix} \end{multline*} Finally, \begin{multline*} \begin{pmatrix}\begin{array}{rr} 4 & -\sqrt{5}\\ 2\sqrt{5} & -3 \end{array}\end{pmatrix}^{n}=A^{n}=(MDM^{-1})^{n}=MD^{n}M^{-1}=\\ \begin{pmatrix}\begin{array}{rr} \frac{\sqrt{5}}{2} & 1\\ 1 & \sqrt{5} \end{array}\end{pmatrix}\begin{pmatrix}\begin{array}{rr} 2 & 0\\ 0 & -1 \end{array}\end{pmatrix}^{n}\begin{pmatrix}\begin{array}{rr} \frac{2\sqrt{5}}{3} & -\frac{2}{3}\\ -\frac{2}{3} & \frac{\sqrt{5}}{3} \end{array}\end{pmatrix}=\begin{pmatrix}\begin{array}{rr} \frac{\sqrt{5}}{2} & 1\\ 1 & \sqrt{5} \end{array}\end{pmatrix}\begin{pmatrix}\begin{array}{rr} 2^{n} & 0\\ 0 & (-1)^{n} \end{array}\end{pmatrix}\begin{pmatrix}\begin{array}{rr} \frac{2\sqrt{5}}{3} & -\frac{2}{3}\\ -\frac{2}{3} & \frac{\sqrt{5}}{3} \end{array}\end{pmatrix}=\\ =\begin{pmatrix}\begin{array}{rr} 2^{n-1}\sqrt{5} & (-1)^{n}\\ 2^{n} & (-1)^{n}(\sqrt{5)} \end{array}\end{pmatrix}\begin{pmatrix}\begin{array}{rr} \frac{2\sqrt{5}}{3} & -\frac{2}{3}\\ -\frac{2}{3} & \frac{\sqrt{5}}{3} \end{array}\end{pmatrix}=\begin{pmatrix}\begin{array}{rr} \frac{5\cdot2^{n}}{3}+\frac{2}{3}(-1)^{n+1} & -\frac{2^{n}\sqrt{5}}{3}+\frac{\sqrt{5}(-1)^{n}}{3}\\ \frac{2^{n+1}\sqrt{5}}{3}+\frac{2\sqrt{5}(-1)^{b+1}}{3} & -\frac{2^{n+1}}{3}+\frac{5(-1)^{n}}{3} \end{array}\end{pmatrix} \end{multline*} and that for sure is a good place to stop, \end{document}