\documentclass{article} \usepackage{amsmath} \usepackage{amsfonts} \begin{document} \title{Solving a Quartic Equation With No Rational Roots} \author{Amit Yaron} \maketitle I once saw a nice quartic equation on YouTube: \begin{equation*} x^4-2x^3+x=6 \end{equation*} But I didn't wat to watck the video. I want to solve it myself using the method commonly used on those videos: factorizing the quartic polynomial into 2 quadratic ones. The factorizarion is: \begin{equation} (x^2-ax+b)[x^2+(a-2)x-\frac6b]=x^4-2x^3+x-6 \end{equation} hoping to find integer $a$ and $b$. But, before trying to find them, let us talk about the possible number of values for pairs of complex $a$ and $b$: accoring to the fundamental law of algebra a quartic polynomial $P(z)$ can be factored over $\mathbb{C}$ as: \begin{equation*} P(z)=a(z-z_1)(z-z_2)(z-z_3)(z-z_4) \end{equation*} In how many ways we can choose order pairs of 2 unordered pairs from the 4 factors? \begin{equation*} \binom 4 2 = 6 \end{equation*} 6 ways, and with the Commutativw Law, we actually have 3. So, in (1):\\ $-a$ can be a root of one cubic equation and $a-2$ of another. Let us now expand: \begin{equation*} x^4-2x^3+x-6=x^4-2x^3+[b-\frac6b-a(a-2)]x^2+[(a-2)b+\frac{6a}b]x-6 \end{equation*} By equating the coefficient, we obtain the following system: \begin{equation} \left\{ \begin{alignedat}{1} b-\frac6b-a(a-2)&=0\\(a-2)b+\frac{6a}b&=1 \end{alignedat} \right. \end{equation} Let us get rid of the $b$ in the denominator. Multiply the first wquation of (2) by $a$ \begin{equation} ab-\frac{6a}b-a^2(a-2)=0 \end{equation} Add (3) to the second equation of(2): \begin{align*} &ab-a^2(a-2)+(a-2)b=1\Rightarrow\\ \Rightarrow &ab-a^3+2a^2+ab-2b=1\Rightarrow\\ \Rightarrow &-a^3+2a^2+2ab-2b=1\Rightarrow\\ \Rightarrow &a^3-2a^2-2ab+2b+1=0\Rightarrow\\ \Rightarrow &a^3-1-2a^2-2ab+2b+2=0\Rightarrow\\ \Rightarrow &(a-1)(a^2+a+1)-2(a^2-1)-(2a-2)b=0\Rightarrow\\ \Rightarrow &(a-1)(a^2+a+1)-(2a+2)(a-1)-2b(a-1)=0\Rightarrow\\ \Rightarrow &(a-1)(a^2-a-1-2b)=0 \end{align*} Luckily, we find that $a=1$ is a solution. Let us find the corresponding values of $b$: from the equations of (2). Equation 1: \begin{align*} &b-\frac6b-1(1-2)=0\Rightarrow\\ \Rightarrow &b-\frac6b+1=0\Rightarrow\\ \Rightarrow &b^2-6+b=0\Rightarrow\\ \Rightarrow &b^2+b-6=0\Rightarrow\\ \Rightarrow &(b-2)(b+3)=0 \end{align*} Equation 2: \begin{align*} &(1-2)b+\frac6b=1\Rightarrow\\ \Rightarrow &-b+\frac6b=1\Rightarrow\\ \Rightarrow &b^2-6=-b\Rightarrow\\ \Rightarrow &b^2+b-6=0\Rightarrow\\ \Rightarrow &(b-2)(b+3)=0 \end{align*} \\ Cool!, the solutions are $b\in(2,-3)$, Plug the values into (1) and get: \begin{equation} (x^2-x+2)(x^2-x-3)=0 \end{equation} The solutions from $x^2-x+2=0$ are: \begin{align*} &4x^2-4x+8=0\Rightarrow\\ \Rightarrow &4x^2-4x+1=-7\Rightarrow\\ \Rightarrow &(2x-1)^2=(\sqrt7i)^2\Rightarrow\\ \Rightarrow &2x-1=\pm\sqrt7i\Rightarrow\\ \Rightarrow &x=\frac{1\pm\sqrt7i}2 \end{align*} The solutions from $x^2-x-3=0$ are: \begin{align*} &4x^2-4x-12=0\Rightarrow\\ \Rightarrow &4x^2-4x+1=13\Rightarrow\\ \Rightarrow &(2x-1)^2=(\sqrt{13})^2\Rightarrow\\ \Rightarrow &2x-1=\pm\sqrt{13}\Rightarrow\\ \Rightarrow &x=\frac{1\pm\sqrt{13}}2 \end{align*} \end{document}