%% LyX 2.3.4.2 created this file. For more info, see http://www.lyx.org/. %% Do not edit unless you really know what you are doing. \documentclass[english]{article} \usepackage[T1]{fontenc} \usepackage[latin9]{inputenc} \usepackage{amsmath} \usepackage{babel} \begin{document} \title{Calculating the Series $1+4r+9r^{2}+\cdots$} \author{Amit Yaron} \date{June 14, 2021} \maketitle Another one from YouTube: $1+4r+9r^{2}+\cdots$ The series can be written as: \[ S(r)=\sum_{n=0}^{\infty}(n+1)^{2}r^{n} \] How to solve? We can derive the series \[ \frac{1}{1-x}=\sum_{n=0}^{\infty}x^{n} \] and get \[ \frac{1}{(1-x)^{2}}=\sum_{n=1}^{\infty}nx^{n-1}=\sum_{n=0}^{\infty}(n+1)x^{n} \] derive once again and get: \[ \frac{2}{(1-x)^{3}}=\sum_{n=1}^{\infty}n(n+1)x^{n-1}=\sum_{n=0}^{\infty}(n+1)(n+2)x^{n} \] From the above, we can conclude that we can calculate $S(r)$ without derivatives and/or anti-derivatives by multiplying it and dividing it by $(1-r)$ as many times as needed. Let us start: \begin{align*} S(r) & =\frac{1-r}{1-r}S(r)=\frac{1}{1-r}\sum_{n=0}^{\infty}(n+1)^{2}(1-r)r^{n}=\frac{1}{1-r}\sum_{n=0}^{\infty}[(n+1)^{2}r^{n}-(n+1)^{2}r^{n+1}]=\\ = & \frac{1}{1-r}[\sum_{n=0}^{\infty}(n+1)^{2}r^{n}-\sum_{n=1}^{\infty}n^{2}r^{n}]=\frac{1}{1-r}\sum_{n=0}^{\infty}[(n+1)^{2}-n^{2}]r^{n}=\frac{1}{1-r}\sum_{n=0}^{\infty}(2n+1)r^{n}=\\ = & \frac{1}{(1-r)^{2}}\sum_{n=0}^{\infty}(2n+1)(1-r)r^{n}=\frac{1}{(1-r)^{2}}\sum_{n=0}^{\infty}[(2n+1)r^{n}-(2n+1)r^{n+1}]=\\ = & \frac{1}{(1-r)^{2}}[\sum_{n=0}^{\infty}(2n+1)r^{n}-\sum_{n=1}^{\infty}(2n-1)r^{n}]=\frac{1}{(1-r)^{2}}[\sum_{n=0}^{\infty}2r^{n}+(0-1)]=\\ = & \frac{1}{(1-r)^{2}}[-1+\sum_{n=0}^{\infty}2r^{n}]=\frac{1}{(1-r)^{2}}(-1+\frac{2}{1-r})=\frac{1+r}{(1-r)^{3}} \end{align*} It converges for $r\in(-1,1)$ \end{document}