\documentclass{article} \usepackage{amsmath} \begin{document} \title{Solving $x^5-x^4-1=0$} \author{Amit Yaron} \date{Jul 9, 2024} \maketitle Don't use the Abel-Ruffini theorem as an excuse to skip that equation. Find a trick to factorize it into a cubic and a quadratic polynomial. 5 and 4 are two consecutive numbers, and none of them is divisible by 3. And, there are the two identities: \begin{equation}x^3-1=(x-1)(x^2+x+1)\end{equation} and \begin{equation}x^3+1=(x+1)(x^2-x+1)\end{equation} which means that if $x$ is a complex number:\\ $x^2+x+1=0\Rightarrow x^3=1$\\ and $x^2-x+1=0\Rightarrow x^3=-1$\\ \\ Obe conclusion is that if $m,n$ are non-negative integers, then:\\ $x^2+x+1\mid x^{3m+2}+x^{3n+1}+1$\\ The proof is simple:\\ $x^2+x+1=0\Rightarrow x^3=1\Rightarrow x^{3m+2}+x^{3n+1}+1=x^2+x+1$\\ \\ Finding polynomials divisible by $x^2-x+1$ is more complicated. Let us just plug $x^3=-1$ into our equation:\\ $x^2-x+1=0\Rightarrow\\ \Rightarrow x^3=-1\Rightarrow\\ \Rightarrow x^5-x^4-1=-x^2+x-1=-(x^2-x+1)$\\ \\ Now, let us solve the equation: \begin{align*}&x^5-x^4-1=0\Rightarrow\\ \Rightarrow&x^3(x^2-x)-1=0\Rightarrow\\ \Rightarrow&x^3(x^2-x+1)-x^3-1=0\Rightarrow\\ \Rightarrow&x^3(x^2-x+1)-(x^3+1)=0\Rightarrow\\ \Rightarrow&x^3(x^2-x+1)-(x+1)(x^2-x+1)=0\Rightarrow\\ \Rightarrow&(x^3-x-1)(x^2-x+1)=0\end{align*} The solution of the quadratic equation is: \begin{equation}x=\frac{1\pm\sqrt3i}2\end{equation} The cubic equation will be solve using Cardano-Tartaglia formula:\\ Find $u,v$ such that: $x=u+v\Rightarrow x^3-x-1=0$\\ From the formula for cubing a sum of 2 numbers: \begin{align}&(u+v)^3=u^3+v^3+3uv(u+v)\nonumber\Rightarrow\\ \Rightarrow& x^3=3uvx+u^3+v^3\end{align} Equating coefficients of (4) with those of $x^3=x+1$, we get that:\\ $\begin{cases}3uv=1\\u^3+v^3=1\end{cases}\Rightarrow\\ \Rightarrow \begin{cases}27u^3v^3=1\\u^3+v^3=1\end{cases}$\\ Let us plug $v^3=1-u^3$ into the first equation: \begin{align*}&27u^3(1-u^3)=1\Rightarrow\\ \Rightarrow&27u^3-27u^6=1\Rightarrow\\ \Rightarrow&27u^6-27u^3+1=0\Rightarrow\\ \Rightarrow& u^3=\frac{27\pm\sqrt{27^2-108}}{54}\Rightarrow\\ \Rightarrow& u^3=\frac{27\pm\sqrt{621}}{54}\Rightarrow\\ \Rightarrow& u^3=\frac{27\pm3\sqrt{69}}{54}\Rightarrow\\ \Rightarrow&u^3=\frac{9\pm\sqrt{69}}{18}\Rightarrow\\ \Rightarrow&u^3=\frac12\pm\sqrt{\frac{69}{324}}\Rightarrow\\ \Rightarrow&u^3=\frac12\pm\sqrt{\frac{23}{108}}\end{align*} Now, WLOG, let us take: $\begin{cases}u^3=\frac12+\sqrt{\frac{23}{108}}\\ v^3=\frac12-\sqrt{\frac{23}{108}}\end{cases}$\\ Let us take cube roots, then: $\begin{cases}u=\sqrt[3]{\frac12+\sqrt{\frac{23}{108}}}\\ v=\sqrt[3]{\frac12-\sqrt{\frac{23}{108}}}\end{cases}$\\ Now, the first root of the cubic equation will be\\ $x=u+v\approx1.324717957244746$\\ For more solution, let us define:\\ $w=\frac{-1+\sqrt{3}i}2$\\ The second solution will be:\\ $x=uw+vw^{*}\approx-0.662358978622373+0.5622795120623011i$\\ The third solution will be:\\ $x=uw^{*}+vw\approx-0.662358978622373-0.5622795120623011i$ \end{document}