Calculating the Sum of Cubes of Integers from 1 to \mathbf{n}

If you are a math student, you probably had at least once to prove the formula for the sum of squares using mathematical induction. Mathematical induction is a good ways to prove such identities provided that you already know them. A more advanced way to get the result is by using generating functions.

The Generating Function

A generating function is a taylor series that uses elements of an infinite sequene as its coefficients. You can calculate those coefficient either by deriving the function, or by applying elementary arithmetical operations.

A very basic generating function is:

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}
$$

Now, it is easy to prove that for a natural number k
(1) $\frac{1}{(1-x)^{k}}=\sum_{n=0}^{\infty}\binom{n+k-1}{k-1} x^{n}$

The Sequence

We are looking for a sequence a_{n}, such that for every non-negative integer n :

$$
a_{n}=\sum_{k=0}^{n} k^{3}
$$

Let us define it recursively, so

$$
\begin{aligned}
& a_{0}=0 \\
& a_{n+1}=a_{n}+(n+1)^{3}
\end{aligned}
$$

Now, let S be our generating function $S=\sum_{n=0}^{\infty} a_{n}$, so:

$$
\sum_{n=0}^{\infty} a_{n+1} x^{n+1}=\sum_{n=0}^{\infty} a_{n} x^{n+1}+\sum_{n=0}^{\infty}(n+1)^{3} x^{n+1}
$$

which is:
(2) $S-a_{0}=x S+\sum_{n=0}^{\infty} n^{3} x^{n}$

Now, what is $\sum_{n=0}^{\infty} n^{3} x^{n} \quad$? Fisrt, let's find $\sum_{n=0}^{\infty} n x^{n} f i$

$$
\frac{1}{(1-x)^{2}}=\frac{d}{d x} \frac{1}{1-x}=\frac{d}{d x} \sum_{(n=0)}^{\infty} x^{n}=\sum_{n=0}^{\infty}(n+1) x^{n}
$$

Let us multiply both sides by x , and get:

$$
\frac{x}{(1-x)^{2}}=\sum_{n=0}^{\infty}(n+1) x^{n+1}=\sum_{n=0}^{\infty} n x^{n}
$$

Let us derive once again:

$$
\frac{(1-x)^{2}+2 x(1-x)}{(1-x)^{4}}=\frac{1-2 x+x^{2}+2 x-2 x^{2}}{(1-x)^{4}}=\frac{1-x^{2}}{(1-x)^{4}}=\frac{(1-x)(1+x)}{(1-x)^{4}}=\frac{1+x}{(1-x)^{3}}=\sum_{n=1}^{\infty}\left(n^{2}\right) x^{n-1}
$$

Now, let's multiply both sides by x:

$$
\frac{x(x+1)}{(1-x)^{3}}=\sum_{n=0}^{\infty} n^{2} x^{n}
$$

Now, let us derive once again:

$$
\frac{(2 x+1)(1-x)^{3}+3\left(x^{2}+x\right)(1-x)^{2}}{(1-x)^{6}}=\frac{\left[(2 x+1)(1-x)+3\left(x^{2}+x\right)\right]}{(1-x)^{4}}=\frac{x^{2}+4 x+1}{(1-x)^{4}}=\sum_{n=1}^{\infty} n^{3} x^{n-1}
$$

Multiply by x :

$$
\frac{x^{3}+4 x^{2}+x}{(1-x)^{4}}=\sum_{n=0}^{\infty} n^{3} x^{n}
$$

Now, let us use this identity in (2):

$$
\begin{aligned}
& S=x S+\frac{x^{3}+4 x^{2}+x}{(1-x)^{4}} \\
& S(1-x)=\frac{x^{3}+4 x^{2}+x}{(1-x)^{4}} \\
& S=\frac{x^{3}+4 x^{2}+x}{(1-x)^{5}}
\end{aligned}
$$

From (1):

$$
\begin{aligned}
& S=\left(x^{3}+4 x^{2}+x\right) \sum_{n=0}^{\infty}\binom{n+4}{4} x^{n}=\left(x^{3}+4 x^{2}+x\right) \sum_{(n=0)}^{\infty} \frac{(n+1)(n+2)(n+3)(n+4) x^{n}}{24}= \\
& =\sum_{n=0}^{\infty} \frac{(n+1)(n+2)(n+3)(n+4) x^{(n+3)}}{24}+4 \sum_{(n=0)}^{\infty} \frac{(n+1)(n+2)(n+3)(n+4) x^{n+2}}{24}+ \\
& +\sum_{n=0}^{\infty} \frac{(n+1)(n+2)(n+3)(n+4) x^{n+1}}{24}=\sum_{n=0}^{\infty} \frac{n(n+1)(n-1)(n-2) x^{n}}{24}+ \\
& +4 \sum_{n=0}^{\infty} \frac{n(n+1)(n-1)(n+2) x^{n}}{24}+\sum_{n=0}^{\infty} \frac{n(n+1)(n+2)(n+3) x^{n}}{24}= \\
& =\sum_{n=0}^{\infty} \frac{n(n+1)[(n-1)(n-2)+4(n-1)(n+2)+(n+2)(n+3)] x^{n}}{24}= \\
& =\sum_{n=0}^{\infty} \frac{n(n+1)\left(n^{2}-3 n+2+4 n^{2}+4 n-8+n^{2}+5 n+6\right) x^{n}}{24}=\sum_{n=0}^{\infty} \frac{n(n+1)\left(6 n^{2}+6 n\right) x^{n}}{24}= \\
& =\sum_{n=0}^{\infty} \frac{[n(n+1)]^{2} x^{n}}{4}
\end{aligned}
$$

Thus,

$$
a_{n}=\frac{[n(n-1)]^{2}}{4}=\left(\sum_{k=0}^{n} k\right)^{2}
$$

