
Calculating the Sum of Cubes of
Integers from 1 to n

If you are a math student, you probably had at least once to prove the formula for the sum of squares
using mathematical induction. Mathematical induction is a good ways to prove such identities provided
that you already know them. A more advanced way to get the result is by using generating functions.

The Generating Function
A generating function is a taylor series that uses elements of an infinite sequene as its coefficients.  You
can calculate those coefficient either by deriving the function, or by applying elementary arithmetical 
operations.

A very basic generating function is:
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Now, it is easy to prove that for a natural number k
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The Sequence

We are looking for a sequence an , such that for every non-negative integer n:
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Let us define it recursively, so
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which is:
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Let us multiply both sides by x, and get:
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Let us derive once again:
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Now, let's multiply both sides by x:
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Now, let us derive once again:
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Multiply by x:

x 3
+4 x 2

+x

(1−x )
4 =∑

n=0

∞

n 3 x n

Now, let us use this identity in (2):
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From (1):
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